How the symmetry problem solves the symmetry problem

Matthijs Westera

Institute for Logic, Language and Computation
University of Amsterdam

DGfS AG2, Information Structuring in Discourse
Saarbrücken, March 2017
The Symmetry Problem

(1) A: Who (of John, Mary, Bill) was at the party?
 B: *John* was.
 (implied: not Mary, not Bill)
The Symmetry Problem

(1) A: Who (of John, Mary, Bill) was at the party?
 B: John was. (implied: not Mary, not Bill)

The Symmetry Problem: (e.g., Kroch, 1972)

- If we assume that relevance is closed under negation, explanations of exhaustivity yield contradictions.
The Symmetry Problem

(1) A: Who (of John, Mary, Bill) was at the party?
 B: *John* was.
 (implied: not Mary, not Bill)

The Symmetry Problem: (e.g., Kroch, 1972)
 - If we assume that relevance is closed under negation, explanations of exhaustivity yield contradictions.

Is it a foundational problem?
The Symmetry Problem

(1) A: Who (of John, Mary, Bill) was at the party?
B: John was. \(\text{(implied: not Mary, not Bill)}\)

The Symmetry Problem: (e.g., Kroch, 1972)

- If we assume that relevance is closed under negation, explanations of exhaustivity yield contradictions.

Is it a foundational problem?

- Closure would be “natural” and “hard-to-avoid” (Chierchia et al. 2012);
The Symmetry Problem

(1) A: Who (of John, Mary, Bill) was at the party?
 B: John was. (implied: not Mary, not Bill)

The Symmetry Problem: (e.g., Kroch, 1972)
- If we assume that relevance is closed under negation, explanations of exhaustivity yield contradictions.

Is it a foundational problem?
- Closure would be “natural” and “hard to avoid” (Chierchia et al. 2012);
The Symmetry Problem

(1) A: Who (of John, Mary, Bill) was at the party?
 B: John was. \textit{(implied: not Mary, not Bill)}

The Symmetry Problem: (e.g., Kroch, 1972)

- If we assume that relevance is closed under negation, explanations of exhaustivity yield contradictions.

Is it a foundational problem?

- Closure would be “natural” and “hard to avoid” (Chierchia et al. 2012);
The Symmetry Problem

(1) A: Who (of John, Mary, Bill) was at the party?
 B: *John* was. \((\text{implied: not Mary, not Bill})\)

The Symmetry Problem: (e.g., Kroch, 1972)

- If we assume that relevance is closed under negation, explanations of exhaustivity yield contradictions.

Is it a foundational problem?

- Closure would be “natural” and “hard-to-avoid” (Chierchia et al. 2012);

Is it an empirical problem? Is relevance ever closed under negation when exhaustivity occurs?
The Symmetry Problem

(1) A: Who (of John, Mary, Bill) was at the party?
 B: John was. \(\text{ (implied: not Mary, not Bill)}\)

The Symmetry Problem: (e.g., Kroch, 1972)
- If we assume that relevance is closed under negation, explanations of exhaustivity yield contradictions.

Is it a foundational problem?
- Closure would be “natural” and “hard to avoid” (Chierchia et al. 2012);

Is it an empirical problem? Is relevance ever closed under negation when exhaustivity occurs?
- example (1) doesn’t make a very strong case;
The Symmetry Problem

(1) A: Who (of John, Mary, Bill) was at the party?
 B: *John* was. \textit{(implied: not Mary, not Bill)}

The Symmetry Problem: (e.g., Kroch, 1972)

- If we assume that relevance is closed under negation, explanations of exhaustivity yield contradictions.

Is it a foundational problem?

- Closure would be “natural” and “hard-to-avoid” (Chierchia et al. 2012);
- cf. Horn’s (1989) \textit{Asymmetry Thesis}.

Is it an empirical problem? Is relevance ever closed under negation when exhaustivity occurs?

- example (1) doesn’t make a very strong case;
- but what about (2)?

(2) A: Who (of J, M, B) was present, and who was absent?
The Symmetry Problem

(1) A: Who (of John, Mary, Bill) was at the party?
 B: John was. \hspace{2cm} \textit{(implied: not Mary, not Bill)}

The Symmetry Problem: (e.g., Kroch, 1972)

- If we assume that relevance is closed under negation, explanations of exhaustivity yield contradictions.

Is it a foundational problem?

- Closure would be “natural” and “hard to avoid” (Chierchia et al. 2012);

Is it an empirical problem? Is relevance ever closed under negation when exhaustivity occurs?

- example (1) doesn’t make a very strong case;
- but what about (2)?

(2) A: Who (of J, M, B) was present, and who was absent?
 B: John was there. \hspace{2cm} \textit{(implied: not Mary, not Bill)}
Main aim:
- to solve the Symmetry Problem as an empirical problem;
Aim of this talk

Main aim:
- to solve the Symmetry Problem as an empirical problem; i.e., to account for (2).

(2) A: Who (of J, M, B) was present, and who was absent?
 B: John was there. (implied: not Mary, not Bill)
Aim of this talk

Main aim:
- to solve the Symmetry Problem as an empirical problem; i.e., to account for (2).

(2) A: Who (of J, M, B) was present, and who was absent?
 B: John was there. \textit{(implied: not Mary, not Bill)}

Central insight:
- the Symmetry Problem solves itself once we acknowledge that no piece of pragmatics yields predictions in isolation.
Outline

1. Framework

2. Solving the symmetry problem

3. Discussion
Outline

1. Framework

2. Solving the symmetry problem

3. Discussion
1.1. Speaker-level vs. discourse-level pragmatics

(3) (It’s common knowledge that J+M never attend rainy parties.)

a. A: Were John and Mary at the party?
b. B: It was raining.
1.1. Speaker-level vs. discourse-level pragmatics

(3) *(It’s common knowledge that J+M never attend rainy parties.)*
 a. A: Were John and Mary at the party?
 b. B: It was raining.

Why is this discourse coherent?
1.1. Speaker-level vs. discourse-level pragmatics

(3) *(It’s common knowledge that J+M never attend rainy parties.)*

a. A: Were John and Mary at the party?
b. B: It was raining.

Why is this discourse coherent?

(i) **Discourse-level:** because (3b) is an indirect answer to (3a);
1.1. Speaker-level vs. discourse-level pragmatics

(3) (*It’s common knowledge that J+M never attend rainy parties.*)
 a. A: Were John and Mary at the party?
 b. B: It was raining.

Why is this discourse coherent?
 (i) **Discourse-level:** because (3b) is an indirect answer to (3a);
 (ii) **Speaker-level:** because (*for instance*)...

1.1. Speaker-level vs. discourse-level pragmatics

(3) (It’s common knowledge that J+M never attend rainy parties.)
 a. A: Were John and Mary at the party?
 b. B: It was raining.

Why is this discourse coherent?
 (i) **Discourse-level:** because (3b) is an indirect answer to (3a);
 (ii) **Speaker-level:** because *(for instance)*...
 1. Speaker B asserts that it was raining;
1.1. Speaker-level vs. discourse-level pragmatics

\[(3) \] *It’s common knowledge that J+M never attend rainy parties.*

a. A: Were John and Mary at the party?

b. B: It was raining.

Why is this discourse coherent?

(i) **Discourse-level:** because (3b) is an indirect answer to (3a);

(ii) **Speaker-level:** because *(for instance)*...

1. Speaker B asserts that it was raining;
2. hence speaker B believes that it was raining;
1.1. Speaker-level vs. discourse-level pragmatics

(3) *(It’s common knowledge that J+M never attend rainy parties.)*

 a. A: Were John and Mary at the party?
 b. B: It was raining.

Why is this discourse coherent?

 (i) **Discourse-level:** because (3b) is an indirect answer to (3a);
 (ii) **Speaker-level:** because *(for instance)*...

 1. Speaker B asserts that it was raining;
 2. hence speaker B believes that it was raining;
 3. this entails believing that John and Mary weren’t at the party;
1.1. Speaker-level vs. discourse-level pragmatics

(3) *(It’s common knowledge that J+M never attend rainy parties.)*
 a. A: Were John and Mary at the party?
 b. B: It was raining.

Why is this discourse coherent?

(i) **Discourse-level:** because (3b) is an indirect answer to (3a);

(ii) **Speaker-level:** because *(for instance)*...
 1. Speaker B asserts that it was raining;
 2. hence speaker B believes that it was raining;
 3. this entails believing that John and Mary weren’t at the party;
 4. given (3a), it is a goal to establish whether they were at the party;
1.1. Speaker-level vs. discourse-level pragmatics

(3) (*It’s common knowledge that J&M never attend rainy parties.*)
 a. A: Were John and Mary at the party?
 b. B: It was raining.

Why is this discourse coherent?

(i) **Discourse-level:** because (3b) is an indirect answer to (3a);
(ii) **Speaker-level:** because (*for instance*)...

1. Speaker B asserts that it was raining;
2. hence speaker B believes that it was raining;
3. this entails believing that John and Mary weren’t at the party;
4. given (3a), it is a goal to establish whether they were at the party;
5. the foregoing is commonly known;
1.1. Speaker-level vs. discourse-level pragmatics

(3) (It’s common knowledge that J+M never attend rainy parties.)
 a. A: Were John and Mary at the party?
 b. B: It was raining.

Why is this discourse coherent?

(i) **Discourse-level:** because (3b) is an indirect answer to (3a);
(ii) **Speaker-level:** because (for instance)...

1. Speaker B asserts that it was raining;
2. hence speaker B believes that it was raining;
3. this entails believing that John and Mary weren’t at the party;
4. given (3a), it is a goal to establish whether they were at the party;
5. the foregoing is commonly known;
6. so B can be taken to implicate that J+M weren’t there.
1.2. Speaker-level pragmatics

goals beliefs

what is uttered
1.2. Speaker-level pragmatics

cognitive science

goals beliefs

what is uttered

syntax, phonology, etc.

observable reality

models
1.2. Speaker-level pragmatics

goals beliefs

what is uttered
1.2. Speaker-level pragmatics

goals

beliefs

what is uttered
1.2. Speaker-level pragmatics

goals

what is meant

beliefs

what is said

what is uttered
1.2. Speaker-level pragmatics
1.2. Speaker-level pragmatics

Diagram:

- **goals**
- **beliefs**
- **intents**
- **contents**
- **what is uttered**
1.2. Speaker-level pragmatics

![Diagram showing the relationship between goals, QUDS, beliefs, intents, contents, and what is uttered.]

- Goals
- QUDS
- Beliefs
- Intents
- Contents
- What is uttered
1.2. Speaker-level pragmatics

- Goals
- QUDS
- Beliefs
- Intents
- Contents
- What is uttered

Semantics
1.2. Speaker-level pragmatics

- Goals
- QUDs
- Beliefs
- Intents
- Contents
- Manner
- Semantics
- What is uttered
1.2. Speaker-level pragmatics

- what is uttered
 - contents
 - QUUDs
 - QUDs
 - intents
 - goals
 - beliefs
 - QUALITY
 - QUANTITY
 - RELATION
 - MANNER
 - Semantics
 - what is uttered
1.2. Speaker-level pragmatics

- what is uttered
 - contents
 - Semantics
 - MANNER
 - QUALITY
 - QUANTITY
 - RELATION
 - intents
 - QUDs
 - beliefs
 - strategies, etc.
 - goals
1.2. Speaker-level pragmatics

```
goals

QUDs

beliefs

QUALITY

QUANTITY

RELATION

intents

strategies, etc.
(rhetorical relations?)

(MANNER)

contents

Semantics

what is uttered
```
Part IV: Bridging QUD~coherence

- **Coherence Relations:** Comprehenders use general inferencing to identify relationships between propositions (Mann & Thompson, 1988; Webber & Joshi, 1998; Hobbs, 1990; Kehler, 2002; Asher & Lascarides, 2003; Webber, 2006; reviews in Knott, 1996 and Hutchinson, 2005)

 Mary scolded John. She did so loudly. Mary scolded John. He was late again.

<table>
<thead>
<tr>
<th>Elaboration</th>
<th>Explanation</th>
</tr>
</thead>
</table>

- **Question-Under-Discussion models:** An utterance is coherent insofar as it answers a question relevant to the proceeding discourse (Roberts, 1996; Van Kuppevelt, 1995; Büring, 2003; Larsson, 1998; Ginzburg & Sag, 2000)

 Mary scolded John. She did so loudly. Mary scolded John. He was late again.

 | How? | Why? |
1.2. Speaker-level pragmatics

- contents
- intents
- beliefs
- goals
- strategies, etc.
 (rhetorical relations?)

Semantics
- QUALITY
- QUANTITY
- RELATION
- MANNER

what is uttered

Semantics
Outline

1. Framework

2. Solving the symmetry problem

3. Discussion
2.1. The symmetry problem

(2) A: Who (of J, M, B) was present, and who was absent?
 B: John was there.
 (implied: not Mary, not Bill)
2.1. The symmetry problem

(2) A: Who (of J, M, B) was present, and who was absent?
B: John was there.
\textit{(implied: not Mary, not Bill)}
2.1. The symmetry problem

(2) A: Who (of J, M, B) was present, and who was absent?
 B: John was there.
 (implied: not Mary, not Bill)
2.1. The symmetry problem

(2) A: Who (of J, M, B) was present, and who was absent?
 B: John was there. \textit{(implied: not Mary, not Bill)}
2.1. The symmetry problem

(2) A: Who (of J, M, B) was present, and who was absent?
 B: John was there. (implied: not Mary, not Bill)
2.2. Towards a solution

(2) A: Who (of J, M, B) was present, and who was absent?
 B: John was there.
 (implied: not Mary, not Bill)
2.2. Towards a solution

"John was there."

(2) A: Who (of J, M, B) was present, and who was absent?
 B: John was there.
 (implied: not Mary, not Bill)
(2) A: Who (of J, M, B) was present, and who was absent?
B: John was there.

(implied: not Mary, not Bill)
2.2. Towards a solution

(2) A: Who (of J, M, B) was present, and who was absent?
B: John was there.
\textit{(implied: not Mary, not Bill)}
(2) A: Who (of J, M, B) was present, and who was absent?
B: *John* was there.
 (implied: not Mary, not Bill)
2.3. Completing the account

For a complete explanation, we need to know:
2.3. Completing the account

For a complete explanation, we need to know:

1. Why splitting the QUD would be a rational maneuver;
2.3. Completing the account

For a complete explanation, we need to know:

1. Why splitting the QUd would be a rational maneuver;

2. How an audience can detect it (and accommodate the new QUds);
2.3. Completing the account

For a complete explanation, we need to know:

1. Why splitting the QUD would be a rational maneuver;
 - it is an ordinary case of discourse strategy (Roberts, 1996);

2. How an audience can detect it (and accommodate the new QUDs);
2.3. Completing the account

For a complete explanation, we need to know:

1. Why splitting the QUD would be a rational maneuver;
 ▶ it is an ordinary case of *discourse strategy* (Roberts, 1996);

2. How an audience can detect it (and accommodate the new QUDs);
 ▶ accent/focus reflects the QUD that is explicitly addressed.
2.3. Completing the account

For a complete explanation, we need to know:

1. Why splitting the QUD would be a rational maneuver;
 - it is an ordinary case of discourse strategy (Roberts, 1996);
 - it enables exhaustivity implicature, thereby favoring brevity.

2. How an audience can detect it (and accommodate the new QUDs);
 - accent/focus reflects the QUD that is explicitly addressed.
2.3. Completing the account

For a complete explanation, we need to know:

1. Why splitting the QUd would be a rational maneuver;
 ▶ it is an ordinary case of discourse strategy (Roberts, 1996);
 ▶ it enables exhaustivity implicature, thereby favoring brevity.

2. How an audience can detect it (and accommodate the new QUdS);
 ▶ accent/focus reflects the QUd that is explicitly addressed.
 ▶ a symmetrical QUd would predict a contradiction;
Outline

1. Framework

2. Solving the symmetry problem

3. Discussion
3.1. Existing scale-based accounts

At best, "scales" may help explain how an audience figures out which QUDs to accommodate.
3.1. Existing scale-based accounts

At best, "scales" may help explain how an audience figures out which QUDs to accommodate.
3.1. Existing scale-based accounts

At best, "scales" may help explain how an audience figures out which QUDs to accommodate.

"John was there."
3.1. Existing scale-based accounts

At best, “scales” may help explain how an audience figures out which QUDs to accommodate.
3.2. Existing brevity-based accounts

Some challenges:

- Brevity seems as context-dependent as relevance itself (Matsumoto, 1995);
- It may seem plausible for "all" vs. "some but not all," but:
- What about "was" vs. "wasn't"?
- What about "present" vs. "absent"?
- What about the mirror image:

(A) Who (of J, M, B) was present, and who was absent?
(B) John wasn't there / was absent.
(implies: Mary & Bill were present.)
3.2. Existing brevity-based accounts

Some challenges:

▶ brevity seems as context-dependent as relevance itself (Matsumoto, 1995);
▶ it may seem plausible for "all" vs. "some but not all", but:
▶ what about "was" vs. "wasn't"?
▶ what about "present" vs. "absent"?
▶ what about the mirror image:

(4) A: Who (of J, M, B) was present, and who was absent?
B: John wasn't there / was absent.
(implies: Mary & Bill were present.)

"John was there."
3.2. Existing brevity-based accounts

Some challenges:

- brevity seems as context-dependent as relevance itself (Matsumoto, 1995);
3.2. Existing brevity-based accounts

Some challenges:
- brevity seems as context-dependent as relevance itself (Matsumoto, 1995);
- it may seem plausible for “all” vs. “some but not all”, but:
 - what about “was” vs. “wasn’t”?
3.2. Existing brevity-based accounts

Some challenges:

- brevity seems as context-dependent as relevance itself (Matsumoto, 1995);
- it may seem plausible for “all” vs. “some but not all”, but:
 - what about “was” vs. “wasn’t”?
 - what about “present” vs. “absent”?
3.2. Existing brevity-based accounts

Some challenges:

- brevity seems as context-dependent as relevance itself (Matsumoto, 1995);
- it may seem plausible for “all” vs. “some but not all”, but:
 - what about “was” vs. “wasn’t”?
 - what about “present” vs. “absent”?
- what about the mirror image:

(4) A: Who (of J, M, B) was present, and who was absent?
B: John wasn’t there / was absent. \((\text{implies}: \text{Mary \& Bill were present.})\)
3.3. Take-home messages

▶ The symmetry problem solves itself once we realize that:
▶ it is a (superficial) problem only
▶ splitting a symmetrical Qud is a rational discourse strategy.

▶ Remain aware of the full pragmatic tree – no piece of pragmatics yields predictions in isolation;
▶ Remain aware of the distinction between discourse-level and speaker-level pragmatics.
3.3. Take-home messages

- The symmetry problem solves itself once we realize that:
 - it is a (superficial) problem only given a certain QUD;
 - splitting a symmetrical QUD is a rational discourse strategy.
3.3. Take-home messages

- The symmetry problem solves itself once we realize that:
 - it is a (superficial) problem only *given* a certain \(QUD \);
 - splitting a symmetrical \(QUD \) is a rational discourse strategy.

- Remain aware of the full pragmatic tree – no piece of pragmatics yields predictions in isolation;
3.3. Take-home messages

- The symmetry problem solves itself once we realize that:
 - it is a (superficial) problem only given a certain QUD;
 - splitting a symmetrical QUD is a rational discourse strategy.
- Remain aware of the full pragmatic tree – no piece of pragmatics yields predictions in isolation;
- Remain aware of the distinction between discourse-level and speaker-level pragmatics.
3.3. Take-home messages

- The symmetry problem solves itself once we realize that:
 - it is a (superficial) problem only *given* a certain \(\text{QUD} \);
 - splitting a symmetrical \(\text{QUD} \) is a rational discourse strategy.

- Remain aware of the full pragmatic tree – no piece of pragmatics yields predictions in isolation;

- Remain aware of the distinction between discourse-level and speaker-level pragmatics.
3.3. Take-home messages

- The symmetry problem solves itself once we realize that:
 - it is a (superficial) problem only *given* a certain QUD;
 - splitting a symmetrical QUD is a rational discourse strategy.
- Remain aware of the full pragmatic tree – no piece of pragmatics yields predictions in isolation;
- Remain aware of the distinction between discourse-level and speaker-level pragmatics.
Thank you to the organizers!

Anke Holler, Katja Suckow, Barbara Hemforth, Israel de la Fuente
References

▶ Chierchia, G., Fox, D., & Spector, B. (2012). The grammatical view [...]. In Maienborn et al. (Eds.), *Semantics: An international handbook* [...].

Appendix: indirect answers

(3) (It’s common knowledge that J+M never attend rainy parties.)
 a. A: Were John and Mary at the party?
 b. B: It was raining.
Appendix: indirect answers

(3) (It’s common knowledge that J+M never attend rainy parties.)
 a. A: Were John and Mary at the party?
 b. B: It was raining.
Appendix: indirect answers

(3) (It’s common knowledge that J+M never attend rainy parties.)
 a. A: Were John and Mary at the party?
 b. B: It was raining.
Appendix: indirect answers

(3) (It’s common knowledge that J+M never attend rainy parties.)

a. A: Were John and Mary at the party?
 b. B: It was raining.
Appendix: indirect answers

(3) *(It's common knowledge that J+M never attend rainy parties.)*

a. A: Were John and Mary at the party?

b. B: It was raining.
Appendix: indirect answers

(3) *(It’s common knowledge that J+M never attend rainy parties.)*

a. A: Were John and Mary at the party?
b. B: It was raining.
Appendix: indirect answers

(3) (It’s common knowledge that J+M never attend rainy parties.)
 a. A: Were John and Mary at the party?
 b. B: It was raining.
(3) *(It’s common knowledge that J+M never attend rainy parties.)*

a. A: Were John and Mary at the party?
b. B: It was raining.
(3) *(It’s common knowledge that J+M never attend rainy parties.)*

 a. A: Were John and Mary at the party?
 b. B: It was raining.