Exhaustivity is a conversational implicature

Matthijs Westera

Institute for Logic, Language and Computation
University of Amsterdam

Semantics Research Group, Tokyo, October 25th 2013
Exhaustivity is a conversational implicature

Matthijs Westera

Institute for Logic, Language and Computation
University of Amsterdam

Semantics Research Group, Tokyo, October 25th 2013
1.1. Aims of this talk

(1) Of John, Bill and Mary, who came to the party?
- John came. \(\sim\) Mary and Bill didn’t. \(\text{(exhaustivity)}\)
1.1. Aims of this talk

(1) Of John, Bill and Mary, who came to the party?
- John came. \(\sim \) Mary and Bill didn’t. (exhaustivity)

As a speaker, how can you:

> *Ensure* that your answer is interpreted exhaustively?
1.1. Aims of this talk

(1) Of John, Bill and Mary, who came to the party?
 - John came. \(\sim\) Mary and Bill didn’t. \(\text{(exhaustivity)}\)

As a speaker, how can you:

- *Ensure* that your answer is interpreted exhaustively?
- *Prevent* that your answer is interpreted exhaustively?
1.2. Exhaustivity as a conversational implicature

(1) Of John, Bill and Mary, who came to the party?
 - John came. \sim Mary and Bill didn’t. (exhaustivity)
1.2. Exhaustivity as a conversational implicature

(1) Of John, Bill and Mary, who came to the party?
 - John came. \(\sim\) Mary and Bill didn’t. (exhaustivity)

Conversational implicature (Grice, 1975)

An implicature, the supposition of which is necessary for maintaining the assumption that the speaker is cooperative.
1.2. Exhaustivity as a conversational implicature

(1) Of John, Bill and Mary, who came to the party?
 - John came. \(\sim\) Mary and Bill didn’t. \textit{(exhaustivity)}

Conversational implicature \textit{(Grice, 1975)}

An implicature, the supposition of which is necessary for maintaining the assumption that the speaker is cooperative.

1. Had sp. believed Mary or Bill came, she should have said so.
1.2. Exhaustivity as a conversational implicature

(1) Of John, Bill and Mary, who came to the party?
- John came. \sim Mary and Bill didn’t. (exhaustivity)

Conversational implicature (Grice, 1975)

An implicature, the supposition of which is necessary for maintaining the assumption that the speaker is cooperative.

1. Had sp. believed Mary or Bill came, she should have said so.
2. She didn’t, so she lacks the belief that they came.
1.2. Exhaustivity as a conversational implicature

(1) Of John, Bill and Mary, who came to the party?
- John came. \(\sim\) Mary and Bill didn’t. (exhaustivity)

Conversational implicature (Grice, 1975)
An implicature, the supposition of which is necessary for maintaining the assumption that the speaker is cooperative.

1. Had sp. believed Mary or Bill came, she should have said so.
2. She didn’t, so she lacks the belief that they came.
 ...
3. She believes that they didn’t come.
1.2. Exhaustivity as a conversational implicature

(1) Of John, Bill and Mary, who came to the party?
 - John came. \(\sim\) Mary and Bill didn’t. \(\text{(exhaustivity)}\)

Conversational implicature (Grice, 1975)

An implicature, the supposition of which is necessary for maintaining the assumption that the speaker is cooperative.

1. Had sp. believed Mary or Bill came, she should have said so.
2. She didn’t, so she lacks the belief that they came.
 \(\ldots\) \(\text{('the epistemic step' - Sauerland, 2004)}\)
3. She believes that they didn’t come.
1.2. Exhaustivity as a conversational implicature

(1) Of John, Bill and Mary, who came to the party?
 - John came. \sim Mary and Bill didn’t. (exhaustivity)

Conversational implicature (Grice, 1975)

An implicature, the supposition of which is necessary for maintaining the assumption that the speaker is cooperative.

1. Had sp. believed Mary or Bill came, she should have said so.
2. She didn’t, so she lacks the belief that they came.
 \ldots (‘the epistemic step’ - Sauerland, 2004)
3. She believes that they didn’t come.

"[the epistemic] step does not follow from Gricean maxims and logic alone." - Chierchia, et al. (2008)
1.2. Exhaustivity as a conversational implicature

(1) Of John, Bill and Mary, who came to the party?
 - John came. \(\sim\) Mary and Bill didn’t. (exhaustivity)

Conversational implicature (Grice, 1975)

An implicature, the supposition of which is necessary for maintaining the assumption that the speaker is cooperative.

1. Had sp. believed Mary or Bill came, she should have said so.
2. She didn’t, so she lacks the belief that they came.
 \(\ldots\) (‘the epistemic step’ - Sauerland, 2004)
3. She believes that they didn’t come.

“[the epistemic] step does not follow from Gricean maxims and logic alone.” - Chierchia, et al. (2008)

Wrong, it does!
1.3. Existing ‘Gricean’ approaches

Most existing work (from Mill, 1867 to Geurts, 2010):
1.3. Existing ‘Gricean’ approaches

Most existing work (from Mill, 1867 to Geurts, 2010):

1. The sp. is *opinionated* about whether Mary came
 (Context)
1.3. Existing ‘Gricean’ approaches

Most existing work (from Mill, 1867 to Geurts, 2010):

1. The sp. is *opinionated* about whether Mary came (Context)
2. She lacks the belief that Mary came (Quantity)
1.3. Existing ‘Gricean’ approaches

Most existing work (from Mill, 1867 to Geurts, 2010):

1. The sp. is *opinionated* about whether Mary came (Context)
2. She lacks the belief that Mary came (Quantity)
3. She believes that Mary didn’t come
1.3. Existing ‘Gricean’ approaches

Most existing work (from Mill, 1867 to Geurts, 2010):

1. The sp. is *opinionated* about whether Mary came

2. She lacks the belief that Mary came

3. She believes that Mary didn’t come
1.3. Existing ‘Gricean’ approaches

Most existing work (from Mill, 1867 to Geurts, 2010):

1. The sp. is *opinionated* about whether Mary came

2. She lacks the belief that Mary came

3. She believes that Mary didn’t come

- It is empirically inadequate:
1.3. Existing ‘Gricean’ approaches

Most existing work (from Mill, 1867 to Geurts, 2010):

1. The sp. is *opinionated* about whether Mary came (Context)
2. She lacks the belief that Mary came (Quantity)
3. She believes that Mary didn’t come

- It is empirically inadequate:

(2) I’m probably asking the wrong person, but of John, Bill and Mary, who came to the party?
- John and Bill came. ¬*Not Mary.*
1.3. Existing ‘Gricean’ approaches

Most existing work (from Mill, 1867 to Geurts, 2010):

1. The sp. is *opinionated* about whether Mary came
2. She lacks the belief that Mary came
3. She believes that Mary didn’t come

- It is empirically inadequate:

(2) I’m probably asking the wrong person, but of John, Bill and Mary, who came to the party?
 - John and Bill came. ～ *Not Mary.*

- Opinionatedness must be something *conveyed by the speaker.*
1.3. Existing ‘Gricean’ approaches

Most existing work (from Mill, 1867 to Geurts, 2010):
1. The sp. is *opinionated* about whether Mary came
2. She lacks the belief that Mary came
3. She believes that Mary didn’t come
 - It is empirically inadequate:
 (2) I’m probably asking the wrong person, but of John, Bill and Mary, who came to the party?
 - John and Bill came. \sim *Not Mary.*
 - Opinionatedness must be something *conveyed by the speaker,* but how?!
1.4. The bigger picture

The standard Gricean account of exhaustivity is not *generative*:
1.4. The bigger picture

The standard Gricean account of exhaustivity is not *generative*:

- It requires a contextual *opinionatedness assumption*;
1.4. The bigger picture

The standard Gricean account of exhaustivity is not *generative*:

- It requires a contextual *opinionatedness assumption*;
- It depends on what is *relevant*;
1.4. The bigger picture

The standard Gricean account of exhaustivity is not *generative*:

- It requires a contextual *opinionatedness assumption*;
- It depends on what is *relevant*;
- Worst of all, implicatures are supposedly *cancellable*.
1.4. The bigger picture

The standard Gricean account of exhaustivity is not *generative*:
- It requires a contextual *opinionatedness assumption*;
- It depends on what is *relevant*;
- Worst of all, implicatures are supposedly *cancellable*.

Attempted ‘remedies’:
- Replacing ‘relevance’ by lexical scales (since Horn, 1972).
1.4. The bigger picture

The standard Gricean account of exhaustivity is not *generative*:

- It requires a contextual *opinionatedness assumption*;
- It depends on what is *relevant*;
- Worst of all, implicatures are supposedly *cancellable*.

Attempted ‘remedies’:

- Replacing ‘relevance’ by lexical scales (since Horn, 1972).
- Blindly negating alternatives by covert operators
 (mainly since Chierchia, *et al.*, 2008).
1.4. The bigger picture

The standard Gricean account of exhaustivity is not *generative*:
- It requires a contextual *opinionatedness assumption*;
- It depends on what is *relevant*;
- Worst of all, implicatures are supposedly *cancellable*.

Attempted ‘remedies’:
- Replacing ‘relevance’ by lexical scales (since Horn, 1972).
- Blindly negating alternatives by covert operators
 (mainly since Chierchia, *et al.*, 2008).

I will show that none of this is necessary.
Part I: Exhaustivity is a conversational implicature.

Part II: Intonation and exhaustivity
Part I: Exhaustivity is a conversational implicature.

- Without the opinionatedness assumption.

Part II: Intonation and exhaustivity
Part I: Exhaustivity is a conversational implicature.

- Without the opinionatedness assumption.
- Through the maxim of Relation.

Part II: Intonation and exhaustivity
Part I: Exhaustivity is a conversational implicature.

- Without the opinionatedness assumption.
- Through the maxim of Relation.

Part II: Intonation and exhaustivity

- Focus further reduces contextual uncertainty.
Part I: Exhaustivity is a conversational implicature.

- Without the opinionatedness assumption.
- Through the maxim of Relation.

Part II: Intonation and exhaustivity

- Focus further reduces contextual uncertainty.
- How the final rise prevents exhaustivity.
Part I: Exhaustivity is a conversational implicature.

2. Diagnosis
3. Theory
4. Results
2. Diagnosis

(3) a. Of John, Bill and Mary, who came to the party?
 b. John came. ~ Mary didn’t come
2. Diagnosis

(3) a. Of John, Bill and Mary, who came to the party?
 b. John came. \(\sim\) Mary didn’t come
 c. John came, or Mary and John. \(\not\sim\) Mary didn’t come
2. Diagnosis

(3) a. Of John, Bill and Mary, who came to the party?
 b. John came. \(\sim\) Mary didn’t come
 c. John came, or Mary and John. \(\not\sim\) Mary didn’t come

Intuition
(3b) and (3c) differ in their attentive content.
2. Diagnosis

(3) a. Of John, Bill and Mary, who came to the party?
 b. John came. \sim Mary didn’t come
 c. John came, or Mary and John. \not\vdash Mary didn’t come

Intuition

(3b) and (3c) differ in their attentive content.

- (3c) draws attention to the poss. that Mary came too.
2. Diagnosis

(3) a. Of John, Bill and Mary, who came to the party?
 b. John came. \(\sim\) Mary didn’t come
 c. John came, or Mary and John. \(\not\sim\) Mary didn’t come

Intuition
(3b) and (3c) differ in their \textit{attentive content}.

\begin{itemize}
\item (3c) draws attention to the poss. that Mary came too.
\item (And so does (3a).)
\end{itemize}
2. Diagnosis

(3) a. Of John, Bill and Mary, who came to the party?
 b. John came. \hspace{1cm} \sim Mary didn’t come
 c. John came, or Mary and John. \hspace{1cm} \lor Mary didn’t come

Intuition

(3b) and (3c) differ in their attentive content.

- (3c) draws attention to the poss. that Mary came too.
- (And so does (3a).)
- (3b) doesn’t; it leaves the possibility unattended.
2. Diagnosis

(3) a. Of John, Bill and Mary, who came to the party?
 b. John came. ~ Mary didn’t come
 c. John came, or Mary and John. ~\(\top\) Mary didn’t come

Intuition
(3b) and (3c) differ in their attentive content.

- (3c) draws attention to the poss. that Mary came too.
- (And so does (3a).)
- (3b) doesn’t; it leaves the possibility unattended.

Apparently, pragmatic reasoning is sensitive to this.
2. Diagnosis

(3) a. Of John, Bill and Mary, who came to the party?
 b. John came. \[\sim\] Mary didn’t come
 c. John came, or Mary and John. \[\not\sim\] Mary didn’t come

Intuition
(3b) and (3c) differ in their \textit{attentive content}.

\begin{itemize}
 \item (3c) draws attention to the poss. that Mary came too.
 \item (And so does (3a).)
 \item (3b) doesn’t; it leaves the possibility \textit{unattended}.
\end{itemize}

Apparently, pragmatic reasoning is sensitive to this.
2. Diagnosis

(3) a. Of John, Bill and Mary, who came to the party?
 b. John came. \(\sim\) Mary didn’t come
 c. John came, or Mary and John. \(\not\sim\) Mary didn’t come

Intuition
(3b) and (3c) differ in their **attentive content**.

- (3c) draws attention to the poss. that Mary came too.
- (And so does (3a).)
- (3b) doesn’t; it leaves the possibility **unattended**.

Apparently, pragmatic reasoning is sensitive to this.
(3) a. Of John, Bill and Mary, who came to the party?
 b. John came.
 c. John came, or Mary and John.

Intuition

(3b) and (3c) differ in their attentive content.

- (3c) draws attention to the poss. that Mary came too.
- (And so does (3a).)
- (3b) doesn’t; it leaves the possibility unattended.

Apparently, pragmatic reasoning is sensitive to this.
2. Diagnosis

(3) a. Of John, Bill and Mary, who came to the party?
 b. John came.
 c. John came, or Mary and John.

Intuition

(3b) and (3c) differ in their attentive content.

- (3c) draws attention to the poss. that Mary came too.
- (And so does (3a).)
- (3b) doesn’t; it leaves the possibility unattended.

Apparently, pragmatic reasoning is sensitive to this.
3. Theory

3.1. Translation into logic
3.2. Semantics
3.3. Pragmatics
3.1. Translation into logic

(4) a. Of John, Bill and Mary, who came to the party?
 b. John came. ~ Mary didn’t come
 c. John came, or Mary and John. ⊤ Mary didn’t come
3.1. Translation into logic

(4) a. Of John and Mary, who came to the party?
 b. John came. \[\sim Mary \text{ didn’t come} \]
 c. John came, or Mary and John. \[\not\sim Mary \text{ didn’t come} \]
3.1. Translation into logic

(4) a. Of John and Mary, some came to the party.
 b. John came. \[\neg \text{Mary didn’t come} \]
 c. John came, or Mary and John. \[\text{Mary didn’t come} \]
3.1. Translation into logic

\[(4) \]

a. John came, or Mary, or John and Mary.

b. John came. \[\sim \text{Mary didn’t come} \]

c. John came, or Mary and John. \[\not\sim \text{Mary didn’t come} \]
3.1. Translation into logic

(4) a. John came, or Mary, or John and Mary.
 b. John came.
 c. John came, or Mary and John.
3.1. Translation into logic

(4) a. John came, or Mary, or John and Mary. \[p \lor q \lor (p \land q) \]
b. John came. \[p \]
c. John came, or Mary and John. \[p \lor (p \land q) \]
3.2. Semantics (Roelofsen, 2011)
3.2. Semantics (Roelofsen, 2011)

- *Possibility*: a set of worlds \((a, b)\)
3.2. Semantics (Roelofsen, 2011)

- *Possibility*: a set of worlds \((a, b)\)
- *Proposition*: a set of possibilities \((A, B, [\varphi])\)
3.2. Semantics (Roelofsen, 2011)

- **Possibility**: a set of worlds \((a, b)\)
- **Proposition**: a set of possibilities \((A, B, [\varphi])\)
- **Informative content**: \(|\varphi| := \bigcup[\varphi]|
3.2. Semantics (Roelofsen, 2011)

- **Possibility**: a set of worlds \((a, b)\)
- **Proposition**: a set of possibilities \((A, B, [\varphi])\)
- **Informative content**: \(|\varphi| := \bigcup[\varphi]\)

\[
(4a) \ [p \lor q \lor (p \land q)] \quad (4b) \ [p] \quad (4c) \ [p \lor (p \land q)]
\]
3.2. Semantics (Roelofsen, 2011)

- **Possibility**: a set of worlds \((a, b)\)
- **Proposition**: a set of possibilities \((A, B, [\varphi])\)
- **Informative content**: \(|\varphi| := \bigcup [\varphi] \)

\[(4a) \quad [p \lor q \lor (p \land q)]\]
\[(4b) \quad [p] \]
\[(4c) \quad [p \lor (p \land q)] \]
3.2. Semantics (Roelofsen, 2011)

- **Possibility:** a set of worlds \((a, b)\)
- **Proposition:** a set of possibilities \((A, B, [\varphi])\)
- **Informative content:** \(|\varphi| := \bigcup[\varphi]\)

\[
\begin{align*}
(4a) & \quad [p \lor q \lor (p \land q)] \\
(4b) & \quad [p] \\
(4c) & \quad [p \lor (p \land q)]
\end{align*}
\]

Entailment

\(A\) **entails** \(B\), \(A \models B\), iff

(i) \(\bigcup A \subseteq \bigcup B\); and

(ii) for all \(b \in B\), if \(b \cap \bigcup A \neq \emptyset\), \(b \cap \bigcup A \in A\)
3.2. Semantics (Roelofsen, 2011)

- **Possibility**: a set of worlds \((a, b)\)
- **Proposition**: a set of possibilities \((A, B, [\varphi])\)
- **Informative content**: \(|\varphi| := \bigcup [\varphi]\

\[(4a) \quad [p \lor q \lor (p \land q)]\]
\[(4b) \quad [p]\]
\[(4c) \quad [p \lor (p \land q)]\]

Entailment

\(A \text{ entails } B, A \models B, \text{ iff} \)

(i) \(\bigcup A \subseteq \bigcup B\); and

(ii) for all \(b \in B\), if \(b \cap \bigcup A \neq \emptyset\), \(b \cap \bigcup A \in A\)

→ at least as informative
3.2. Semantics (Roelofsen, 2011)

- **Possibility**: a set of worlds \((a, b)\)
- **Proposition**: a set of possibilities \((A, B, [\varphi])\)
- **Informative content**: \(|\varphi| := \cup[\varphi]\

Entailment

\(A\) entails \(B\), \(A \models B\), iff

(i) \(\cup A \subseteq \cup B\); and

(ii) for all \(b \in B\), if \(b \cap \cup A \neq \emptyset\), \(b \cap \cup A \in A\)

\textcolor{red}{\rightarrow \text{at least as informative}}

\textcolor{red}{\rightarrow \text{at least as attentive}}
3.2. Semantics (Roelofsen, 2011)

- *Possibility*: a set of worlds \((a, b)\)
- *Proposition*: a set of possibilities \((A, B, [\varphi])\)
- *Informative content*: \(|\varphi| := \bigcup[\varphi]\

Entailment

\(A\) entails \(B\), \(A \models B\), iff

(i) \(\bigcup A \subseteq \bigcup B\); and

(ii) for all \(b \in B\), if \(b \cap \bigcup A \neq \emptyset\), \(b \cap \bigcup A \in A\)

Now, \((4c) \models (4a)\), but \((4b) \not\models (4a)\).
3.3. Pragmatics

The relevant maxims

1. Quality:
2. Quantity:
3. Relation:

(5) Did John go to the party?
It was raining.
If it rained, John {went / didn't go}.
The relevant maxims
For a cooperative speaker with information s, responding R to Q:

1. **Quality**:
2. **Quantity**:
3. **Relation**:

(5) Did John go to the party?
It was raining.
If it rained, John {{went / didn't go}}.
3.3. Pragmatics

The relevant maxims
For a cooperative speaker with information s, responding R to Q:

1. **Quality**: $s \subseteq \bigcup R$.
2. **Quantity**:
3. **Relation**:

(5) Did John go to the party?
It was raining.

If it rained, John \{went / didn't go\}.
3.3. Pragmatics

The relevant maxims

For a cooperative speaker with information s, responding R to Q:

1. **Quality**: $s \subseteq \bigcup R$.
2. **Quantity**: For all $Q' \subseteq Q$, if $s \subseteq \bigcup Q'$ then $\bigcup R \subseteq \bigcup Q'$.
3. **Relation**:

(5) Did John go to the party?
It was raining.

If it rained, John \{went / didn't go\}.
3.3. Pragmatics

The relevant maxims
For a cooperative speaker with information s, responding R to Q:

1. **Quality**: $s \subseteq \bigcup R$.
2. **Quantity**: For all $Q' \subseteq Q$, if $s \subseteq \bigcup Q'$ then $\bigcup R \subseteq \bigcup Q'$.
3. **Relation**: $\{ r \cap s \mid r \in R \} \models Q$.

\[\text{Did John go to the party?} \]
\[\text{It was raining.} \]
\[\text{If it rained, John } \{ \text{went } / \text{didn't go} \}. \]
3.3. Pragmatics

The relevant maxims
For a cooperative speaker with information s, responding R to Q:

1. **Quality**: $s \subseteq \bigcup R$.
2. **Quantity**: For all $Q' \subseteq Q$, if $s \subseteq \bigcup Q'$ then $\bigcup R \subseteq \bigcup Q'$.
3. **Relation**: $\{r \cap s \mid r \in R\} \models Q$.

(5) Did John go to the party?
It was raining.
3.3. Pragmatics

The relevant maxims
For a cooperative speaker with information s, responding R to Q:

1. **Quality**: $s \subseteq \bigcup R$.
2. **Quantity**: For all $Q' \subseteq Q$, if $s \subseteq \bigcup Q'$ then $\bigcup R \subseteq \bigcup Q'$.
3. **Relation**: $\{ r \cap s \mid r \in R \} \models Q$.

(5) Did John go to the party?
It was raining.
The relevant maxims
For a cooperative speaker with information s, responding R to Q:

1. **Quality**: $s \subseteq \bigcup R$.
2. **Quantity**: For all $Q' \subseteq Q$, if $s \subseteq \bigcup Q'$ then $\bigcup R \subseteq \bigcup Q'$.
3. **Relation**: $\{ r \cap s \mid r \in R \} \models Q$.

(5) Did John go to the party?
It was raining.
3.3. Pragmatics

The relevant maxims
For a cooperative speaker with information s, responding R to Q:

1. **Quality**: $s \subseteq \bigcup R$.
2. **Quantity**: For all $Q' \subseteq Q$, if $s \subseteq \bigcup Q'$ then $\bigcup R \subseteq \bigcup Q'$.
3. **Relation**: $\{ r \cap s \mid r \in R \} \supseteq Q$.

(5) Did John go to the party?
It was raining.

\[
\begin{aligned}
\text{rp} & \quad \text{rp} \\
\text{rp} & \quad \text{rp} \\
\text{rp} & \quad \text{rp} \\
\end{aligned}
\quad = \quad
\begin{aligned}
\text{rp} & \quad \text{rp} \\
\text{rp} & \quad \text{rp} \\
\text{rp} & \quad \text{rp} \\
\end{aligned}
\quad \Rightarrow \quad
\begin{aligned}
\text{rp} & \quad \text{rp} \\
\text{rp} & \quad \text{rp} \\
\text{rp} & \quad \text{rp} \\
\end{aligned}
\]
3.3. Pragmatics

The relevant maxims
For a cooperative speaker with information \(s \), responding \(R \) to \(Q \):

1. **Quality**: \(s \subseteq \bigcup R \).
2. **Quantity**: For all \(Q' \subseteq Q \), if \(s \subseteq \bigcup Q' \) then \(\bigcup R \subseteq \bigcup Q' \).
3. **Relation**: \(\{ r \cap s \mid r \in R \} \models Q \).

(5) Did John go to the party?
It was raining.
3.3. Pragmatics

The relevant maxims
For a cooperative speaker with information s, responding R to Q:

1. **Quality**: $s \subseteq \bigcup R$.
2. **Quantity**: For all $Q' \subseteq Q$, if $s \subseteq \bigcup Q'$ then $\bigcup R \subseteq \bigcup Q'$.
3. **Relation**: $\{r \cap s \mid r \in R\} \models Q$.

(5) Did John go to the party?
It was raining.

\[\begin{array}{ccc}
 \text{rp} & \text{rp} & \text{rp} \\
 \text{rp} & \text{rp} & \text{rp} \\
 \text{rp} & \text{rp} & \text{rp} \\
\end{array} \quad = \quad \begin{array}{ccc}
 \text{rp} & \text{rp} & \text{rp} \\
 \text{rp} & \text{rp} & \text{rp} \\
\end{array} \quad \models \quad \begin{array}{ccc}
 \text{rp} & \text{rp} & \text{rp} \\
 \text{rp} & \text{rp} & \text{rp} \\
\end{array} \]
3.3. Pragmatics

The relevant maxims
For a cooperative speaker with information s, responding R to Q:

1. **Quality**: $s \subseteq \bigcup R$.
2. **Quantity**: For all $Q' \subseteq Q$, if $s \subseteq \bigcup Q'$ then $\bigcup R \subseteq \bigcup Q'$.
3. **Relation**: $\{ r \cap s \mid r \in R \} \models Q$.

(5) Did John go to the party?
It was raining. \rightsquigarrow If it rained, John $\{\text{went} / \text{didn't go}\}$.
3.3. Pragmatics
(cf. Grice, 1975; Groenendijk and Stokhof, 1984; Roberts, 1996; Spector, 2007)

The relevant maxims
For a cooperative speaker with information s, responding R to Q:

1. **Quality**: $s \subseteq \bigcup R$.
2. **Quantity**: For all $Q' \subseteq Q$, if $s \subseteq \bigcup Q'$ then $\bigcup R \subseteq \bigcup Q'$.
3. **Relation**: $\{ r \cap s \mid r \in R \} \models Q$.

\[\text{Did John go to the party?} \]
\[\text{It was raining.} \]
\[\therefore \text{If it rained, John } \{ \text{went / didn't go} \}. \]
4. Results

4.1. Examples
4.2. What’s happening
4.3. ‘Alternatives’?
4.4. Main conclusion
4.1. Examples

(4) a. John came, Mary came, or both came \((p \lor q \lor (p \land q))\)

 b. John came. \((p)\)

 c. John came, or Mary and John. \((p \lor (p \land q))\)
4.1. Examples

(4) a. John came, Mary came, or both came \((p \lor q \lor (p \land q))\)

 b. John came. \((p)\)

c. John came, or Mary and John. \((p \lor (p \land q))\)

 1. \(s \subseteq |p \lor (p \land q)|\) \hspace{1cm} \text{(Quality)}
4.1. Examples

(4) a. John came, Mary came, or both came \((p \lor q \lor (p \land q))\)

b. John came. \((p)\)

c. John came, or Mary and John. \((p \lor (p \land q))\)

1. \(s \subseteq |p \lor (p \land q)| = |p|\) (Quality)
4.1. Examples

(4) a. John came, Mary came, or both came \((p \lor q \lor (p \land q))\)

b. John came. \((p)\)

c. John came, or Mary and John. \((p \lor (p \land q))\)

1. \(s \subseteq |p \lor (p \land q)| = |p|\) (Quality)
2. \(s \not\subseteq |q|\) (Quantity)
4.1. Examples

(4) a. John came, Mary came, or both came \((p \lor q \lor (p \land q))\)

b. John came. \((p)\)

c. John came, or Mary and John. \((p \lor (p \land q))\)

1. \(s \subseteq |p \lor (p \land q)| = |p|\)
(\text{Quality})

2. \(s \notin |q|\)
\[
p \lor (p \land q) \supset p \lor q \lor (p \land q)
\]
(\text{Quantity})
4.1. Examples

(4) a. John came, Mary came, or both came \((p \lor q \lor (p \land q))\)

b. John came. \((p)\)

c. John came, or Mary and John. \((p \lor (p \land q))\)

 1. \(s \subseteq |p \lor (p \land q)| = |p|\)

 2. \(s \notin |q|\)

 3. \(\vdash p \lor (p \land q) \vdash p \lor q \lor (p \land q)\)
4.1. Examples

(4) a. John came, Mary came, or both came \((p \lor q \lor (p \land q))\)

b. John came. \((p)\)
 1. \(s \subseteq |p|\)

 (Quality)

 (4) c. John came, or Mary and John. \((p \lor (p \land q))\)
 1. \(s \subseteq |p \lor (p \land q)| = |p|\)

 (Quality)
 2. \(s \nsubseteq |q|\)

 (Quantity)
 3. - \([p \lor (p \land q)] \Rightarrow p \lor q \lor (p \land q)\)

 (Relation)
4.1. Examples

(4) a. John came, Mary came, or both came \((p \lor q \lor (p \land q))\)

b. John came. \((p)\)
 1. \(s \subseteq |p|\)
 \(\text{(Quality)}\)
 2. \(s \not\subseteq |q|\)
 \(\text{(Quantity)}\)

c. John came, or Mary and John. \((p \lor (p \land q))\)
 1. \(s \subseteq |p \lor (p \land q)| = |p|\)
 \(\text{(Quality)}\)
 2. \(s \not\subseteq |q|\)
 \(\text{(Quantity)}\)
 3. \(p \lor (p \land q) \models p \lor q \lor (p \land q)\)
 \(\text{(Relation)}\)
4.1. Examples

(4) a. John came, Mary came, or both came \((p \lor q \lor (p \land q))\)

b. John came. \((p)\)

 1. \(s \subseteq |p|\)
 2. \(s \not\subseteq |q|\)

 \(p \not\subseteq p \lor q \lor (p \land q)\) \hspace{1cm} \text{(Quality)}
 \(p \not\subseteq p \lor q \lor (p \land q)\) \hspace{1cm} \text{(Quantity)}

c. John came, or Mary and John. \((p \lor (p \land q))\)

 1. \(s \subseteq |p \lor (p \land q)| = |p|\) \hspace{1cm} \text{(Quality)}
 2. \(s \not\subseteq |q|\) \hspace{1cm} \text{(Quantity)}
 3. - \hspace{1cm} p \lor (p \land q) \supseteq p \lor q \lor (p \land q)\) \hspace{1cm} \text{(Relation)}
4.1. Examples

(4) a. John came, Mary came, or both came \((p \lor q \lor (p \land q))\)

b. John came. \((p)\)
 1. \(s \subseteq |p|\) \(\neg p \not\subsetneq p \lor q \lor (p \land q)\) \((\text{Quality})\)
 2. \(s \not\subseteq |q|\)

 ![Diagram]

 ![Diagram]
4.1. Examples

(4) a. John came, Mary came, or both came \((p \lor q \lor (p \land q))\)

b. John came. \((p)\)

1. \(s \subseteq |p|\)
2. \(s \not\subseteq |q|\)

\(p \not\subseteq p \lor q \lor (p \land q)\) \((Quality)\)

\(p \not\subseteq p \lor (p \land q)\) \((Quantity)\)

c. John came, or Mary and John. \((p \lor (p \land q))\)

1. \(s \subseteq |p \lor (p \land q)| = |p|\) \((Quality)\)
2. \(s \not\subseteq |q|\) \((Quantity)\)
3. - \(p \lor (p \land q) \not\subseteq p \lor q \lor (p \land q)\) \((Relation)\)
4.1. Examples

(4) a. John came, Mary came, or both came \((p \lor q \lor (p \land q))\)

b. John came. \((p)\)

1. \(s \subseteq |p|\)
2. \(s \not\subseteq |q|\)

\[p \not\subseteq p \lor q \lor (p \land q)\]

(Quantity)

(4) c. John came, or Mary and John. \((p \lor (p \land q))\)

1. \(s \subseteq |p \lor (p \land q)| = |p|\)
2. \(s \not\subseteq |q|\)
3. \(- \quad p \lor (p \land q) \nsubseteq p \lor q \lor (p \land q)\)

(Relation)
4.1. Examples

(4) a. John came, Mary came, or both came \((p \lor q \lor (p \land q))\)

b. John came. \((p)\)
 1. \(s \subseteq |p|\)
 2. \(s \not\subseteq |q|\)

\[\begin{array}{c}
\square_p \quad \square_p \\
\square_p \quad \square_q \\
\square_q \quad \square_p \\
\square_p \quad \square_q
\end{array}\]

\[\begin{array}{c}
\square_q \quad \square_p \\
\square_q \quad \square_p
\end{array}\]

(c. John came, or Mary and John. \((p \lor (p \land q))\)
 1. \(s \subseteq |p \lor (p \land q)| = |p|\)
 2. \(s \not\subseteq |q|\)
 3. - \(p \lor (p \land q) \models p \lor q \lor (p \land q)\)
4.1. Examples

(4) a. John came, Mary came, or both came \((p \lor q \lor (p \land q))\)

b. John came. \((p)\)
 1. \(s \subseteq |p|\)
 2. \(s \notin |q|\)

\(\not\models p \lor q \lor (p \land q)\)

(Quantity)

c. John came, or Mary and John. \((p \lor (p \land q))\)
 1. \(s \subseteq |p \lor (p \land q)| = |p|\)
 2. \(s \notin |q|\)
 3. \(\models p \lor (p \land q) \models p \lor q \lor (p \land q)\)

(Quality)

(Quantity)

(Relation)
4.1. Examples

(4) a. John came, Mary came, or both came \((p \lor q \lor (p \land q))\)

b. John came. \((p)\)

1. \(s \subseteq |p|\)
2. \(s \not\subseteq |q|\)
3. \(s \subseteq |p| \cup |q|\) or \(s \subseteq |p| \cup |q|\)

(4) c. John came, or Mary and John. \((p \lor (p \land q))\)

1. \(s \subseteq |p \lor (p \land q)| = |p|\) \hspace{1cm} (Quality)
2. \(s \not\subseteq |q|\) \hspace{1cm} (Quantity)
3. - \(p \lor (p \land q) \models p \lor q \lor (p \land q)\) \hspace{1cm} (Relation)
4.1. Examples

(4) a. John came, Mary came, or both came \((p \lor q \lor (p \land q))\)

b. John came. \((p)\)

1. \(s \subseteq |p|\)
2. \(s \not\subseteq |q|\)
3. \(s \subseteq |p| \cup |q|\) or \(s \subseteq |p| \cup |q|\)

c. John came, or Mary and John. \((p \lor (p \land q))\)

1. \(s \subseteq |p \lor (p \land q)| = |p|\)
2. \(s \not\subseteq |q|\)
3. - \(p \lor (p \land q) \models p \lor q \lor (p \land q)\)

(exhaustivity!)
4.1. Examples

(4) a. John came, Mary came, or both came \((p \lor q \lor (p \land q))\)

b. John came. \((p)\)
 1. \(s \subseteq |p|\)
 2. \(s \not\subseteq |q|\)
 3. \(s \subseteq |p| \cup |q|\) or \(s \subseteq |p| \cup |q|\)
 4. \(s \subseteq |q|\)

-(Quality)
-(Quantity)
-(Relation)

-(Quality)
-(Quantity)
-(Relation)

-(Quality)
-(Quantity)
-(Relation)

-(Quality)
-(Quantity)
-(Relation)
4.1. Examples

(4) a. John came, Mary came, or both came \((p \lor q \lor (p \land q))\)

b. John came. \((p)\)

1. \(s \subseteq |p|\) \\
2. \(s \not\subseteq |q|\) \hspace{1cm} p \not\subseteq p \lor q \lor (p \land q) \hspace{1cm} \) (Quality) \\
3. \(s \subseteq |p| \cup |q|\) or \(s \subseteq |p| \cup |q|\) \hspace{1cm} \) (Quantity) \\
 \hline \\
4. \(s \subseteq |q|\) exhaustivity!

c. John came, or Mary and John. \((p \lor (p \land q))\)

1. \(s \subseteq |p \lor (p \land q)| = |p|\) \hspace{1cm} \) (Quality) \\
2. \(s \not\subseteq |q|\) \hspace{1cm} p \lor (p \land q) \subseteq p \lor q \lor (p \land q) \hspace{1cm} \) (Quantity) \\
3. - \hspace{1cm} \) (Relation)
4.2. What’s happening?

More generally:

- The maxim of Relation requires that:
 for each possibility the speaker *leaves unattended*, the speaker knows how it depends on the information she provided.
4.2. What’s happening?

More generally:

- The maxim of Relation requires that:
 for each possibility the speaker *leaves unattended*, the speaker knows how it depends on the information she provided.

- Together with Quality, this implies *opinionatedness*.
4.2. What’s happening?

More generally:

- The maxim of Relation requires that: for each possibility the speaker leaves unattended, the speaker knows how it depends on the information she provided.
- Together with Quality, this implies opinionatedness.
- Together with Quantity, this in turn yields exhaustivity.
4.2. What’s happening?

More generally:

- The maxim of Relation requires that:
 for each possibility the speaker *leaves unattended*, the speaker
 knows how it depends on the information she provided.
- Together with Quality, this implies *opinionatedness*.
- Together with Quantity, this in turn yields exhaustivity.

Minimally, the semantics must lack the *absorption laws*:

- Absorption: \(p \lor (p \land q) \equiv p \equiv p \land (p \lor q) \)
4.3. ‘Alternatives’

Existing approaches (since forever):

- ‘Why did the speaker not say “p ∧ q”?’

Mere ignorance is sufficient reason.

My approach:

- ‘Why did the speaker not say “p ∨ (p ∧ q)”?’

Ignorance is no excuse.

Hence something stronger is implied: exhaustivity.

Beware:

 Speakers need not reason in terms of alternatives.
4.3. ‘Alternatives’

Existing approaches (since forever):

- ‘Why did the speaker not say “p ∧ q”?’
- Mere ignorance is sufficient reason.
4.3. ‘Alternatives’

Existing approaches (since forever):

- ‘Why did the speaker not say “\(p \land q \)”?’
- Mere ignorance is sufficient reason.

My approach:

- ‘Why did the speaker not say “\(p \lor (p \land q) \)”?’

Beware:

Speakers need not reason in terms of alternatives.
4.3. ‘Alternatives’

Existing approaches (since forever):
- ‘Why did the speaker not say “\(p \land q \)”?’
- Mere ignorance is sufficient reason.

My approach:
- ‘Why did the speaker not say “\(p \lor (p \land q) \)”?’
- *Ignorance is no excuse.*
4.3. ‘Alternatives’

Existing approaches (since forever):

- ‘Why did the speaker not say “p ∧ q”?’
- Mere ignorance is sufficient reason.

My approach:

- ‘Why did the speaker not say “p ∨ (p ∧ q)”?’
- *Ignorance is no excuse.*
- Hence something stronger is implied: exhaustivity.
4.3. ‘Alternatives’

Existing approaches (since forever):
- ‘Why did the speaker not say “$p \land q$”?’
- Mere ignorance is sufficient reason.

My approach:
- ‘Why did the speaker not say “$p \lor (p \land q)$”?’
- *Ignorance is no excuse.*
- Hence something stronger is implied: exhaustivity.

Beware:
- Speakers need not reason in terms of alternatives.
Main conclusion:

- If pragmatic reasoning is sensitive to *attentive content*
4.4. Main conclusion

Main conclusion:

- If pragmatic reasoning is sensitive to *attentive content* (which it must be, to distinguish between (3b) and (3c));
4.4. Main conclusion

Main conclusion:

- If pragmatic reasoning is sensitive to *attentive content* (which it must be, to distinguish between (3b) and (3c));
- then *exhaustivity is a conversational implicature*.
End of Part I
Part II: Intonation and exhaustivity

5. Focus
6. The final rise
5. Focus

5.1. Focus is necessary for exhaustivity
5.2. Domain restriction
5.3. How to enforce exhaustivity?
5.4. Hungarian vs. English focus
5.5. Experiments
5.1. Focus is necessary for exhaustivity

To ensure an exhaustive interpretation:

- It must be mutually known what the QUD is.
5.1. Focus is necessary for exhaustivity

To ensure an exhaustive interpretation:

- It must be mutually known what the QUD is.
- Language provides a tool to do just that:
5.1. Focus is necessary for exhaustivity

To ensure an exhaustive interpretation:

- It must be mutually known what the QUD is.
- Language provides a tool to do just that:

Focus principle (Beaver and Clark, 2008)

Some part of a declarative utterance must evoke all of the possibilities of the QUD.
5.1. Focus is necessary for exhaustivity

To ensure an exhaustive interpretation:

- It must be mutually known what the QUD is.
- Language provides a tool to do just that:

Focus principle (Beaver and Clark, 2008)

Some part of a declarative utterance must evoke all of the possibilities of the QUD.

(6) Who ate the tofu?
 \[\text{[John]}_F \text{ ate the tofu.} \] / \# John ate the \[\text{[tofu]}_F \].
5.1. Focus is necessary for exhaustivity

To ensure an exhaustive interpretation:

- It must be mutually known what the QUD is.
- Language provides a tool to do just that:

Focus principle (Beaver and Clark, 2008)

Some part of a declarative utterance must evoke all of the possibilities of the QUD.

(6) Who ate the tofu?
 [John]_F ate the tofu. / # John ate the [tofu]_F.

(7) What did John eat?
 # [John]_F ate the tofu. / John ate the [tofu]_F.
5.1. Focus is necessary for exhaustivity

To ensure an exhaustive interpretation:

- It must be mutually known what the QUD is.
- Language provides a tool to do just that:

Focus principle (Beaver and Clark, 2008)

Some part of a declarative utterance **must** evoke all of the possibilities of the QUD.

(6) Who ate the tofu?
 [John]_F ate the tofu. / # John ate the [tofu]_F.

(7) What did John eat?
 # [John]_F ate the tofu. / John ate the [tofu]_F.
5.1. Focus is necessary for exhaustivity

To ensure an exhaustive interpretation:

- It must be mutually known what the QUD is.
- Language provides a tool to do just that:

Focus principle (Beaver and Clark, 2008)

Some part of a declarative utterance must evoke all of the possibilities of the QUD.

(6) Who ate the tofu?
 [John]_F ate the tofu. / # John ate the [tofu]_F.

(7) What did John eat?
 # [John]_F ate the tofu. / John ate the [tofu]_F.

- Focus is necessary for exhaustivity (as a C.I.).
5.1. Focus is necessary for exhaustivity

To ensure an exhaustive interpretation:

- It must be mutually known what the QUD is.
- Language provides a tool to do just that:

Focus principle (Beaver and Clark, 2008)

Some part of a declarative utterance must evoke all of the possibilities of the QUD.

(6) Who ate the tofu?
 [John]$_F$ ate the tofu. / # John ate the [tofu]$_F$.

(7) What did John eat?
 # [John]$_F$ ate the tofu. / John ate the [tofu]$_F$.

- Focus is *necessary* for exhaustivity (as a C.I.).
- However, it is not yet *sufficient*...
5.2. Domain restriction

(6) Who ate the tofu?
 [John]_F ate the tofu. ~ No one else did.
5.2. Domain restriction

(6) Who ate the tofu?

\[\text{[John]}_F \text{ ate the tofu.} \quad \sim \text{No one else did.} \]

Focus alone is not *sufficient*, because:
5.2. Domain restriction

(6) Who ate the tofu?
 [John]_F ate the tofu. \[\sim\text{No one else did.}\]

Focus alone is not *sufficient*, because:

- Unless if we know the QUD’s *domain restriction*,

5.2. Domain restriction

(6) **Who** ate the tofu?

[John]_F ate the tofu. \[\sim\] No one else did.

Focus alone is not *sufficient*, because:

- Unless if we know the QUD’s *domain restriction*,
- we don’t know what the exhaustivity *means* (it could be vacuous)
5.2. Domain restriction

(6) Who ate the tofu?
 \[\text{[John]}_F \text{ ate the tofu.} \quad \sim \quad \text{No one else did.}\]

Focus alone is not *sufficient*, because:
- Unless if we know the QUD’s *domain restriction*,
- we don’t know what the exhaustivity *means*
 (it could be vacuous)

But this too can be fixed:

(8) *Of John, Bob and Mary, who ate the tofu?*
 \[\text{[John]}_F \text{ ate the tofu.} \quad \sim \quad \text{Bob and Mary didn’t.}\]
5.3. Interim summary

How can a speaker enforce exhaustivity?

- Part I: no need for an opinionatedness assumption.
5.3. Interim summary

How can a speaker enforce exhaustivity?

- Part I: no need for an opinionatedness assumption.
- Focus is *necessary* for exhaustivity.
5.3. Interim summary

How can a speaker enforce exhaustivity?

- Part I: no need for an opinionatedness assumption.
- Focus is necessary for exhaustivity.
- With an explicit domain, it is also sufficient.
5.3. Interim summary

How can a speaker enforce exhaustivity?

- Part I: no need for an opinionatedness assumption.
- Focus is *necessary* for exhaustivity.
- With an explicit domain, it is also *sufficient*.

This predicts that exhaustivity in (8) is *mandatory*:

(8) *Of John, Bob and Mary, who ate the tofu?*

 [John]$_F$ ate the tofu. # Indeed, John and Bob did.
5.3. Interim summary

How can a speaker enforce exhaustivity?

- Part I: no need for an opinionatedness assumption.
- Focus is necessary for exhaustivity.
- With an explicit domain, it is also sufficient.

This predicts that exhaustivity in (8) is mandatory:

(8) Of John, Bob and Mary, who ate the tofu?

[John]$_F$ ate the tofu. # Indeed, John and Bob did.

This raises several issues:
5.3. Interim summary

How can a speaker enforce exhaustivity?

- Part I: no need for an opinionatedness assumption.
- Focus is necessary for exhaustivity.
- With an explicit domain, it is also sufficient.

This predicts that exhaustivity in (8) is mandatory:

(8) *Of John, Bob and Mary, who ate the tofu?*

 John$_F$ ate the tofu. \ne Indeed, John and Bob did.

This raises several issues:

- What about *cancellability* (appendix).
5.3. Interim summary

How can a speaker enforce exhaustivity?

- Part I: no need for an opinionatedness assumption.
- Focus is necessary for exhaustivity.
- With an explicit domain, it is also sufficient.

This predicts that exhaustivity in (8) is mandatory:

(8) Of John, Bob and Mary, who ate the tofu?
 [John]$_F$ ate the tofu. # Indeed, John and Bob did.

This raises several issues:

- What about cancellability (appendix).
- What about Hungarian focus? (5.4)
5.3. Interim summary

How can a speaker enforce exhaustivity?

- Part I: no need for an opinionatedness assumption.
- Focus is *necessary* for exhaustivity.
- With an explicit domain, it is also *sufficient*.

This predicts that exhaustivity in (8) is *mandatory*:

(8) *Of John, Bob and Mary, who ate the tofu?*

 \[\text{[John]}_F \text{ ate the tofu.} \neq \text{Indeed, John and Bob did.}\]

This raises several issues:

- What about *cancellability* (appendix).
- What about Hungarian focus? (5.4)
- What about experiments? (5.5)
5.4. Hungarian vs. English focus

Hungarian focus is more obligatory (Szabolcsi, 1981):

(9) [Amy and Ben]$_F$ saw Cleo. \equiv [Amy]$_F$ saw Cleo.
(10) [Amy és Ben]$_F$ látta Cleot. $\not\equiv$ [Amy]$_F$ látta Cleot.
5.4. Hungarian vs. English focus

Hungarian focus is more obligatory (Szabolcsi, 1981):

(9) [Amy and Ben]$_F$ saw Cleo. \equiv [Amy]$_F$ saw Cleo.
(10) [Amy és Ben]$_F$ látta Cleot. $\not\equiv$ [Amy]$_F$ láttta Cleot.

- But if English focus can already enforce exhaustivity...
5.4. Hungarian vs. English focus

Hungarian focus is *more* obligatory (Szabolcsi, 1981):

(9) $[\text{Amy and Ben}]_F$ saw Cleo. $\equiv [\text{Amy}]_F$ saw Cleo.
(10) $[\text{Amy és Ben}]_F$ látta Cleot. $\not\equiv [\text{Amy}]_F$ látta Cleot.

- But if English focus can already enforce exhaustivity...
- then how can Hungarian focus be *even stronger*?
5.4. Hungarian vs. English focus

Hungarian focus is *more* obligatory (Szabolcsi, 1981):

(9) [Amy and Ben]$_F$ saw Cleo. \equiv [Amy]$_F$ saw Cleo.
(10) [Amy és Ben]$_F$ látta Cleot. $\not\equiv$ [Amy]$_F$ látta Cleot.

- But if English focus can already enforce exhaustivity...
- then how can Hungarian focus be *even stronger*?

The only possible explanation:

- Hungarian focus conveys that the domain is ‘wide’.
5.4. Hungarian vs. English focus

Hungarian focus is more obligatory (Szabolcsi, 1981):

(9) [Amy and Ben]$_F$ saw Cleo. \equiv [Amy]$_F$ saw Cleo.
(10) [Amy és Ben]$_F$ látta Cleot. $\not\equiv$ [Amy]$_F$ látta Cleot.

- But if English focus can already enforce exhaustivity...
- then how can Hungarian focus be even stronger?

The only possible explanation:

- Hungarian focus conveys that the domain is ‘wide’.
- Prediction: no difference when domain is explicit.
5.4. Hungarian vs. English focus

Hungarian focus is *more* obligatory (Szabolcsi, 1981):

(9) [Amy and Ben]$_F$ saw Cleo. ≡ [Amy]$_F$ saw Cleo.
(10) [Amy és Ben]$_F$ látta Cleot. \(\neq\) [Amy]$_F$ látta Cleot.

- But if English focus can already enforce exhaustivity...
- then how can Hungarian focus be *even stronger*?

The only possible explanation:

- Hungarian focus conveys that *the domain is ‘wide’*.
- Prediction: no difference when domain is explicit.

(12) Of Amy, Ben, and John, [Amy and Ben]$_F$ saw Cleo.

\(\neq\) Of Amy, Ben, and John, [Amy]$_F$ saw Cleo.
5.5. Experiments

Why do experiments show such mixed results?
5.5. Experiments

Why do experiments show such mixed results?

- QUD and focus are left implicit;
5.5. Experiments

Why do experiments show such mixed results?

- QUD and focus are left implicit;
 (or the wrong foci are compared (Zondervan, 2010))
5.5. Experiments

Why do experiments show such mixed results?

- QUD and focus are left implicit;
 (or the wrong foci are compared (Zondervan, 2010))
- Domain restriction is left implicit;
5.5. Experiments

Why do experiments show such mixed results?

- QUD and focus are left implicit;
 (or the wrong foci are compared (Zondervan, 2010))
- Domain restriction is left implicit;
- Level of granularity is left implicit;
5.5. Experiments

Why do experiments show such mixed results?

- QUD and focus are left implicit;
 (or the wrong foci are compared (Zondervan, 2010))
- Domain restriction is left implicit;
- Level of granularity is left implicit;
- The experimental task may disable maxims;
5.5. Experiments

Why do experiments show such mixed results?

- QUD and focus are left implicit; (or the wrong foci are compared (Zondervan, 2010))
- Domain restriction is left implicit;
- Level of granularity is left implicit;
- The experimental task may disable maxims;
- Intonation is not controlled for.
5.5. Experiments

Why do experiments show such mixed results?

» QUD and focus are left implicit;
 (or the wrong foci are compared (Zondervan, 2010))
» Domain restriction is left implicit;
» Level of granularity is left implicit;
» The experimental task may disable maxims;
» Intonation is not controlled for. (coming up next)
6. The final rise

6.1. The sentence-final rise

6.2. Deriving the readings

6.3. General results

6.4. Contrastive topic (work in progress)

6.5. The bigger picture
6.1. The sentence-final rise

(13) Of John, Bill and Mary, who came to the party?
 John came↘. ~ Mary and Bill didn’t.
6.1. The sentence-final rise

(13) Of John, Bill and Mary, who came to the party?
 John came ↗.
 \(\not\) Mary and Bill didn’t.
6.1. The sentence-final rise

(13) Of John, Bill and Mary, who came to the party?
 John came↗. \[→\text{Mary and Bill didn’t.}\]
 \[→\text{...wait, there’s more.}\]
6.1. The sentence-final rise

(13) Of John, Bill and Mary, who came to the party?
 John came ↑. ↞ Mary and Bill didn’t.
 ↞ ...wait, there’s more.
 ↞ ...perhaps that implies sth. about M&B?
6.1. The sentence-final rise

(13) Of John, Bill and Mary, who came to the party?
 John came ↗.
 ↗ Mary and Bill didn’t.
 ∼ ...wait, there’s more.
 ∼ ...perhaps that implies sth. about M&B?
 ∼ ...but I’m not sure.
6.1. The sentence-final rise

(13) Of John, Bill and Mary, who came to the party?
 John came↗.
 ↗ Mary and Bill didn’t.
 ↘ ...wait, there’s more.
 ↘ ...perhaps that implies sth. about M&B?
 ↘ ...but I’m not sure.
 ↘ ...did I make myself clear?
6.1. The sentence-final rise

(13) Of John, Bill and Mary, who came to the party?
 John came \(\uparrow \) \(L \).
 \(\sim \) ...wait, there’s more.
 \(\sim \) ...perhaps that implies sth. about M&B?
 c. John came \(\uparrow \) \(H \).
 \(\sim \) ...but I’m not sure.
 \(\sim \) ...did I make myself clear?

1. The final rise marks the violation of a maxim.
2. Its pitch conveys emotivity. (Banziger & Scherer, 2005)
3. This reflects the severity of the violation: \(\uparrow \) \(H \): Quality/Manner; (cf. Ward & Hirschberg, 1992) \(\uparrow \) \(L \): Quantity/Relation.

This proposal is new in its generality, not in spirit.
6.1. The sentence-final rise

(13) Of John, Bill and Mary, who came to the party?

John came \uparrow^L. \because Mary and Bill didn’t.
\therefore ...wait, there’s more.
\therefore ...perhaps that implies sth. about M&B?

C. John came \uparrow^H.

\therefore ...but I’m not sure.
\therefore ...did I make myself clear?
6.1. The sentence-final rise

(13) Of John, Bill and Mary, who came to the party?
 John came \(\uparrow \) \(L \). \(\nearrow \) Mary and Bill didn’t.
 \(\sim \) ...wait, there’s more. (Quantity)
 \(\sim \) ...perhaps that implies sth. about M&B? (Relation)
 c. John came \(\uparrow \) \(H \).
 \(\sim \) ...but I’m not sure.
 \(\sim \) ...did I make myself clear?
6.1. The sentence-final rise

(13) Of John, Bill and Mary, who came to the party?
John came \uparrow^L. $\not\nearrow$ Mary and Bill didn’t.
\leadsto ...wait, there’s more. (Quantity)
\leadsto ...perhaps that implies sth. about M&B? (Relation)
c. John came \uparrow^H.
\leadsto ...but I’m not sure.
\leadsto ...did I make myself clear?

Proposal

1. The final rise marks the violation of a maxim.
6.1. The sentence-final rise

(13) Of John, Bill and Mary, who came to the party?

John came \nearrow^L. $\not\nearrow$ Mary and Bill didn’t.

$\not\nearrow$...wait, there’s more. (Quantity)

$\not\nearrow$...perhaps that implies sth. about M&B? (Relation)

\nearrow c. John came \nearrow^H.

$\not\nearrow$...but I’m not sure. (Quality)

$\not\nearrow$...did I make myself clear?

Proposal

1. The final rise marks the violation of a maxim.
6.1. The sentence-final rise

(13) Of John, Bill and Mary, who came to the party?
 John came \uparrow^L. \nLeftarrow Mary and Bill didn’t.
 \leadsto ...wait, there’s more. (Quantity)
 \leadsto ...perhaps that implies sth. about M&B? (Relation)
 c. John came \uparrow^H.
 \leadsto ...but I’m not sure. (Quality)
 \leadsto ...did I make myself clear? (Manner)

Proposal

1. The final rise marks the violation of a maxim.
6.1. The sentence-final rise

(13) Of John, Bill and Mary, who came to the party?
 John came \(\nearrow L \). \(\not\nearrow \) Mary and Bill didn’t.
 \(\nearrow \) ...wait, there’s more. (Quantity)
 \(\nearrow \) ...perhaps that implies sth. about M&B? (Relation)
 c. John came \(\nearrow H \).
 \(\nearrow \) ...but I’m not sure. (Quality)
 \(\nearrow \) ...did I make myself clear? (Manner)

Proposal

1. The final rise marks the violation of a maxim.
2. Its pitch conveys emotivity. (Banziger & Scherer, 2005)
6.1. The sentence-final rise

(13) Of John, Bill and Mary, who came to the party?

John came \rightarrow^L.
Mary and Bill didn’t.

\sim ...wait, there’s more. (Quantity)
\sim ...perhaps that implies sth. about M&B? (Relation)

C. John came \rightarrow^H.

\sim ...but I’m not sure. (Quality)
\sim ...did I make myself clear? (Manner)

Proposal

1. The final rise marks the violation of a maxim.
2. Its pitch conveys emotivity. (Banziger & Scherer, 2005)
3. This reflects the severity of the violation:
 \rightarrow^H: Quality/Manner; (cf. Ward & Hirschberg, 1992)
 \rightarrow^L: Quantity/Relation.
6.1. The sentence-final rise

(13) Of John, Bill and Mary, who came to the party?
 John came $\nearrow L$. $\not\nearrow$ Mary and Bill didn’t.
 \nearrow ...wait, there’s more. (Quantity)
 \nearrow ...perhaps that implies sth. about M&B? (Relation)
c. John came $\nearrow H$.
 \nearrow ...but I’m not sure. (Quality)
 \nearrow ...did I make myself clear? (Manner)

Proposal

1. The final rise marks the violation of a maxim.
2. Its pitch conveys emotivity. (Banziger & Scherer, 2005)
3. This reflects the severity of the violation:
 $\nearrow H$: Quality/Manner; (cf. Ward & Hirschberg, 1992)
 $\nearrow L$: Quantity/Relation.

This proposal is new in its generality, not in spirit.
6.2. Deriving the readings

(14) Of J and M, who came to the party?
 John came ↗.

\[(p \lor q \lor (p \land q)) \]
\[(p) \]
6.2. Deriving the readings

(14) Of J and M, who came to the party? \((p \lor q \lor (p \land q))\)
 John came \(\uparrow\).

Readings

...wait, there’s more. \(\checkmark\) (Quantity)
...perhaps that implies sth. about Mary? \(\checkmark\) (Relation)
...but I’m not sure. \(\checkmark\) (Quality)
...did I make myself clear? \(\checkmark\) (Manner)
6.2. Deriving the readings

(14) Of J and M, who came to the party? \((p \lor q \lor (p \land q)) \)

John came \(\uparrow \).

1. \(s \subseteq \overline{p} \)
 (Quality)
2. \(s \not\subseteq \overline{q} \)
 (Quantity)
3. \(s \subseteq \overline{p} \cup \overline{q} \) or \(s \subseteq \overline{p} \cup \overline{q} \)
 (Relation)

Readings

...wait, there’s more.
 (Quantity)
...perhaps that implies sth. about Mary?
 (Relation)
...but I’m not sure.
 (Quality)
...did I make myself clear?
 (Manner)
6.2. Deriving the readings

(14) Of J and M, who came to the party? \((p \lor q \lor (p \land q))\)

John came \(\uparrow\).

1. \(s \subseteq |p|\)
2. \(s \notin |q|\)
3. \(s \subseteq \overline{|p| \cup |q|}\) or \(s \subseteq \overline{|p| \cup |q|}\)
4. The speaker thinks she is clear, concise, etc.

Readings

...wait, there’s more. \((\text{Quantity})\)
...perhaps that implies sth. about Mary? \((\text{Relation})\)
...but I’m not sure. \((\text{Quality})\)
...did I make myself clear? \((\text{Manner})\)
6.2. Deriving the readings

(14) Of J and M, who came to the party? \((p \lor q \lor (p \land q))\)

John came \(\uparrow\).

1. \(s \notin |p|\)
2. \(s \notin |q|\)
3. \(s \subseteq |p| \cup |q|\) or \(s \subseteq |p| \cup |q|\)
4. The speaker thinks she is clear, concise, etc.

Readings

...wait, there’s more. \((\text{Quantity})\)
...perhaps that implies sth. about Mary? \((\text{Relation})\)
...but I’m not sure. \((\text{Quality})\)
...did I make myself clear? \((\text{Manner})\)
6.2. Deriving the readings

(14) Of J and M, who came to the party? \((p \lor q \lor (p \land q))\)
John came \(\uparrow\).

1. \(s \notin |p|\)
2. \(s \notin |q|\)
3. \(s \subseteq |p| \cup |q|\) or \(s \subseteq |p| \cup |q|\)
4. The speaker thinks she is clear, concise, etc.

Readings

...wait, there’s more. \((\text{Quantity})\)
...perhaps that implies sth. about Mary? \((\text{Relation})\)
✓ ...but I’m not sure. \((\text{Quality})\)
...did I make myself clear? \((\text{Manner})\)
6.2. Deriving the readings

(14) Of J and M, who came to the party? \((p \lor q \lor (p \land q))\)
John came \(\uparrow\).

1. \(s \subseteq |p|\)
 (Quality)

2. \(s \notin |q|\)
 (Quantity)

3. \(s \subseteq \overline{|p| \cup |q|}\) or \(s \subseteq \overline{|p| \cup |q|}\)
 (Relation)

4. The speaker thinks she is clear, concise, etc.
 (Manner)

Readings

...wait, there’s more.
 (Quantity)

...perhaps that implies sth. about Mary?
 (Relation)

✓ ...but I’m not sure.
 (Quality)

✓ ...did I make myself clear?
 (Manner)
6.2. Deriving the readings

(14) Of J and M, who came to the party? (p ∨ q ∨ (p ∧ q))
 John came ↗.
 1. s ⊆ |p| (Quality)
 2. s ⊆ |q| (↑)
 3. s ⊆ |p| ∪ |q| or s ⊆ |p| ∪ |q| (Relation)
 4. The speaker thinks she is clear, concise, etc. (Manner)

Readings

...wait, there’s more. (Quantity)
...perhaps that implies sth. about Mary? (Relation)
✓ ...but I’m not sure. (Quality)
✓ ...did I make myself clear? (Manner)
6.2. Deriving the readings

(14) Of J and M, who came to the party? \((p \lor q \lor (p \land q)) \)

John came \(\uparrow \).

1. \(s \subseteq |p| \)
2. \(s \subseteq |q| \)
3. \(s \subseteq \overline{|p| \cup |q|} \) or \(s \subseteq \overline{|p| \cup |q|} \)
4. The speaker thinks she is clear, concise, etc.

Readings

✓ ...wait, there’s more. \((\text{Quantity}) \)
 ...perhaps that implies sth. about Mary? \((\text{Relation}) \)
✓ ...but I’m not sure. \((\text{Quality}) \)
 ...did I make myself clear? \((\text{Manner}) \)
6.2. Deriving the readings

(14) Of J and M, who came to the party? \((p \lor q \lor (p \land q))\)

John came ↗.

1. \(s \subseteq |p|\) (Quality)
2. \(s \not\subseteq |q|\) (Quantity)
3. \(s \subseteq \overline{|p| \cup |q|}\) or \(s \subseteq \overline{|p| \cup |q|}\) (Relation)
4. The speaker thinks she is clear, concise, etc. (Manner)

Readings

✓ ...wait, there’s more. (Quantity)

...perhaps that implies sth. about Mary? (Relation)

✓ ...but I’m not sure. (Quality)

...did I make myself clear? (Manner)
6.2. Deriving the readings

(14) Of J and M, who came to the party? \((p \lor q \lor (p \land q))\)

John came \(\uparrow\).

1. \(s \subseteq |p|\) (Quality)
2. \(s \not\subseteq |q|\) (Quantity)
3. \(s \not\subseteq |p| \cup |q|\) and \(s \not\subseteq |\overline{p}| \cup |\overline{q}|\) (\(\uparrow\))
4. The speaker thinks she is clear, concise, etc. (Manner)

Readings

✓ ...wait, there’s more. (Quantity)
 ...perhaps that implies sth. about Mary? (Relation)
✓ ...but I’m not sure. (Quality)
✓ ...did I make myself clear? (Manner)
6.2. Deriving the readings

(14) Of J and M, who came to the party? \((p \lor q \lor (p \land q))\)

John came ↗.

1. \(s \subseteq |p|\) (Quality)
2. \(s \notin |q|\) (Quantity)
3. \(s \notin \overline{|p|} \cup |q|\) and \(s \notin \overline{|p|} \cup \overline{|q|}\)
4. The speaker thinks she is clear, concise, etc. (Manner)

Readings

✓ ...wait, there’s more. (Quantity)
✓ ...perhaps that implies sth. about Mary? (Relation)
✓ ...but I’m not sure.
 ...did I make myself clear?
6.2. Deriving the readings

(14) Of J and M, who came to the party?

John came ↑.

1. \(s \subseteq |p| \) (Quality)
2. \(s \not\subseteq |q| \) (Quantity)
3. \(s \subseteq |p| \cup |q| \) or \(s \subseteq |p| \cup |q| \) (Relation)
4. The speaker thinks she is clear, concise, etc. (Manner)

Readings

✓ ...wait, there’s more. (Quantity)
✓ ...perhaps that implies sth. about Mary? (Relation)
✓ ...but I’m not sure. (Quality)
 ...did I make myself clear? (Manner)
6.2. Deriving the readings

(14) Of J and M, who came to the party? \((p \lor q \lor (p \land q))\)

John came ↗.

1. \(s \subseteq |p|\) \hspace{1cm} (Quality)
2. \(s \nsubseteq |q|\) \hspace{1cm} (Quantity)
3. \(s \subseteq |p| \cup |q|\) or \(s \subseteq |p| \cup |q|\) \hspace{1cm} (Relation)
4. The speaker doesn’t think she’s clear, concise, etc. \((\uparrow)\)

Readings

✓ ...wait, there’s more. \hspace{1cm} (Quantity)
✓ ...perhaps that implies sth. about Mary? \hspace{1cm} (Relation)
✓ ...but I’m not sure. \hspace{1cm} (Quality)
 ...did I make myself clear? \hspace{1cm} (Manner)
6.2. Deriving the readings

(14) Of J and M, who came to the party? \((p \lor q \lor (p \land q))\)
John came \(\uparrow\).

1. \(s \subseteq |p|\) \hspace{1cm} (Quality)
2. \(s \notin |q|\) \hspace{1cm} (Quantity)
3. \(s \subseteq \overline{|p|} \cup |q|\) or \(s \subseteq \overline{|p|} \cup \overline{|q|}\) \hspace{1cm} (Relation)
4. The speaker doesn’t think she’s clear, concise, etc. \(\uparrow\)

Readings

✓ ...wait, there’s more. \hspace{1cm} (Quantity)
✓ ...perhaps that implies sth. about Mary? \hspace{1cm} (Relation)
✓ ...but I’m not sure. \hspace{1cm} (Quality)
✓ ...did I make myself clear? \hspace{1cm} (Manner)
6.2. Deriving the readings

Of J and M, who came to the party?

\((p \lor q \lor (p \land q))\)

John came.

1. \(s \subseteq |p|\)
2. \(s \not\subseteq |q|\)
3. \(s \subseteq \overline{|p| \cup |q|} \) or \(s \subseteq \overline{|p| \cup |q|} \)
4. The speaker doesn’t think she’s clear, concise, etc.

Readings

✓ ...wait, there’s more.
✓ ...perhaps that implies sth. about Mary?
✓ ...but I’m not sure.
✓ ...did I make myself clear?
6.3. General results

My approach unifies existing approaches:

- Quality: 'lack of belief in proposition expressed' (Truckenbrodt, 2006)
- Relation: 'uncertain relevance'/'scalar uncertainty' (Ward & Hirschberg, 1985)
- Relation: 'rise-fall-rise quantifies over focus alternatives' (Constant, 2012)
- Quantity: 'unfinishedness' (Bartels, 1999)
- Manner reading: Usually treated as a side-effect.

Noteworthy:

- For the Relation readings, attentive content is crucial.
- In all but the last reading, exhaustivity is absent.
- Conjunctive lists: Quantity (I will say more!);
 Disjunctive lists: Relation (I will attend more!)
6.3. General results

My approach unifies existing approaches:

- Quality: ‘lack of belief in proposition expressed’
 (Truckenbrodt, 2006)

- Relation: ‘uncertain relevance’/’scalar uncertainty’
 (Ward & Hirschberg, 1985)

- Relation: ‘rise-fall-rise quantifies over focus alternatives’
 (Constant, 2012)

- Quantity: ‘unfinishedness’ (Bartels, 1999)

Manner reading: Usually treated as a side-effect.

Noteworthy:

For the Relation readings, attentive content is crucial.

In all but the last reading, exhaustivity is absent.

Conjunctive lists: Quantity (I will say more!);
Disjunctive lists: Relation (I will attend more!)
6.3. General results

My approach unifies existing approaches:

- Quality: ‘lack of belief in proposition expressed’

 (Truckenbrodt, 2006)

- Relation: ‘uncertain relevance’/‘scalar uncertainty’

 (Ward & Hirschberg, 1985)

Noteworthy:

For the Relation readings, attentive content is crucial.

In all but the last reading, exhaustivity is absent.

 Conjunctive lists: Quantity (I will say more!);
 Disjunctive lists: Relation (I will attend more!)
6.3. General results

My approach unifies existing approaches:

- **Quality**: ‘lack of belief in proposition expressed’
 (Truckenbrodt, 2006)

- **Relation**: ‘uncertain relevance’/‘scalar uncertainty’
 (Ward & Hirschberg, 1985)

- **Relation**: ‘rise-fall-rise quantifies over focus alternatives’
 (Constant, 2012)

Noteworthy:

- For the Relation readings, attentive content is crucial.
- In all but the last reading, exhaustivity is absent.

Conjunctive lists: Quantity (I will say more!);
Disjunctive lists: Relation (I will attend more!)
6.3. General results

My approach unifies existing approaches:

- Quality: ‘lack of belief in proposition expressed’
 (Truckenbrodt, 2006)

- Relation: ‘uncertain relevance’/‘scalar uncertainty’
 (Ward & Hirschberg, 1985)

- Relation: ‘rise-fall-rise quantifies over focus alternatives’
 (Constant, 2012)

- Quantity: ‘unfinishedness’
 (Bartels, 1999)
6.3. General results

My approach unifies existing approaches:

- **Quality:** ‘lack of belief in proposition expressed’

 (Truckenbrodt, 2006)

- **Relation:** ‘uncertain relevance’/‘scalar uncertainty’

 (Ward & Hirschberg, 1985)

- **Relation:** ‘rise-fall-rise quantifies over focus alternatives’

 (Constant, 2012)

- **Quantity:** ‘unfinishedness’

 (Bartels, 1999)

- **Manner reading:** Usually treated as a side-effect.

Noteworthy:

For the Relation readings, attentive content is crucial.

In all but the last reading, exhaustivity is absent.

Conjunctive lists: Quantity (I will say more!);

Disjunctive lists: Relation (I will attend more!)
6.3. General results

My approach unifies existing approaches:

- Quality: ‘lack of belief in proposition expressed’
 (Truckenbrodt, 2006)
- Relation: ‘uncertain relevance’/‘scalar uncertainty’
 (Ward & Hirschberg, 1985)
- Relation: ‘rise-fall-rise quantifies over focus alternatives’
 (Constant, 2012)
- Quantity: ‘unfinishedness’
 (Bartels, 1999)
- Manner reading: Usually treated as a side-effect.

Noteworthy:

- For the Relation readings, *attentive content* is crucial.
6.3. General results

My approach unifies existing approaches:

- Quality: ‘lack of belief in proposition expressed’
 (Truckenbrodt, 2006)
- Relation: ‘uncertain relevance’/‘scalar uncertainty’
 (Ward & Hirschberg, 1985)
- Relation: ‘rise-fall-rise quantifies over focus alternatives’
 (Constant, 2012)
- Quantity: ‘unfinishedness’
 (Bartels, 1999)
- Manner reading: Usually treated as a side-effect.

Noteworthy:

- For the Relation readings, *attentive content* is crucial.
- In all but the last reading, exhaustivity is absent.
6.3. General results

My approach unifies existing approaches:

- Quality: ‘lack of belief in proposition expressed’
 (Truckenbrodt, 2006)
- Relation: ‘uncertain relevance’/‘scalar uncertainty’
 (Ward & Hirschberg, 1985)
- Relation: ‘rise-fall-rise quantifies over focus alternatives’
 (Constant, 2012)
- Quantity: ‘unfinishedness’
 (Bartels, 1999)
- Manner reading: Usually treated as a side-effect.

Noteworthy:

- For the Relation readings, *attentive content* is crucial.
- In all but the last reading, exhaustivity is absent.
- Conjunctive lists: Quantity (I will say more!);
 Disjunctive lists: Relation (I will attend more!)
6.4. Contrastive topic
Work in progress

- *Focus*: the function of nuclear stress in a *falling* phrase.

To say: 'I'm only answering a subquestion' (Büring, 2003)

(14) Who had what for lunch?

a. [John] had the [beans].

b. [John] had the [beans].
6.4. Contrastive topic

Work in progress

- *Focus*: the function of nuclear stress in a *falling* phrase.
- *Contrastive topic*: ~ in a *rising* phrase.

To say: 'I'm only answering a subquestion' (Bürging, 2003)

(14) Who had what for lunch?

a. [John] had the [beans].
 - only John had something.

b. [John] had the [beans].
 - only John had the beans.

My approach suggests a compositional account of CT.

The maxims of Quantity and Relation can be violated regarding a subset of the QUDs possibilities.

This would be a major advance in our understanding of intonation and information structure.
6.4. Contrastive topic

Work in progress

- **Focus**: the function of nuclear stress in a *falling* phrase.
- **Contrastive topic**: ~ in a *rising* phrase.

To say: ‘I’m only answering a subquestion’ (Büring, 2003)
6.4. Contrastive topic

Work in progress

- **Focus**: the function of nuclear stress in a *falling* phrase.
- **Contrastive topic**: ~ in a *rising* phrase.
 To say: ‘I’m only answering a subquestion’ (Büring, 2003)

(14) Who had what for lunch?
 a. [John]_{CT} had the [beans]_{F}. ~ John had only beans;
 ~ only John had something.
6.4. Contrastive topic

Work in progress

- **Focus**: the function of nuclear stress in a *falling* phrase.
- **Contrastive topic**: ~ in a *rising* phrase.

To say: ‘I’m only answering a subquestion’ (Büring, 2003)

(14) Who had what for lunch?
 a. \([\text{John}]_{CT} \text{ had the } [\text{beans}]_{F}\).
 ~ John had only beans;
 \(\not\sim\) only John had something.

 b. \([\text{John}]_{F} \text{ had the } [\text{beans}]_{CT}\).
 \(\not\sim\) John had only beans;
 ~ only John had the beans.
6.4. Contrastive topic

Work in progress

- **Focus:** the function of nuclear stress in a *falling* phrase.
- **Contrastive topic:** ∼ in a *rising* phrase.

To say: ‘I’m only answering a subquestion’ (Büring, 2003)

(14) Who had what for lunch?

a. \([\text{John}]_C\text{T} \text{ had the } [\text{beans}]_F\). ∼ John had only beans;
\(\not \sim \) only John had something.

b. \([\text{John}]_F \text{ had the } [\text{beans}]_C\text{T}\). ∨ John had only beans;
\(\not \sim \) only John had the beans.

- My approach suggests a compositional account of CT.
6.4. Contrastive topic

Work in progress

- **Focus**: the function of nuclear stress in a *falling* phrase.
- **Contrastive topic**: ∼ in a *rising* phrase.

To say: ‘I’m only answering a subquestion’

(Büring, 2003)

(14) Who had what for lunch?
 a. [John]_{CT} had the [beans]_{F}.
 \[\sim\] John had only beans;
 \[\not\sim\] only John had something.

b. [John]_{F} had the [beans]_{CT}.
 \[\not\sim\] John had only beans;
 \[\sim\] only John had the beans.

- My approach suggests a compositional account of CT.
- The maxims of Quantity and Relation can be violated regarding a *subset of the QUDs possibilities*.

6.4. Contrastive topic

Work in progress

- **Focus**: the function of nuclear stress in a *falling* phrase.
- **Contrastive topic**: ∼ in a *rising* phrase.

To say: ‘I’m only answering a subquestion’
(Büring, 2003)

(14) Who had what for lunch?

a. [John] ↗ had the [beans] ↘. ∼ John had only beans; ↗ only John had something.

b. [John] ↘ had the [beans] ↗. ↗ John had only beans; ∼ only John had the beans.

- My approach suggests a compositional account of CT.
- The maxims of Quantity and Relation can be violated regarding a subset of the QUDs possibilities.
6.4. Contrastive topic

Work in progress

- **Focus:** the function of nuclear stress in a *falling* phrase.
- **Contrastive topic:** ~ in a *rising* phrase.
 To say: ‘I’m only answering a subquestion’
 (Büring, 2003)

(14) Who had what for lunch?
 a. [John] ↗ had the [beans] ↘. ~ John had only beans;
 ↘ only John had something.
 b. [John] ↘ had the [beans] ↗. ↗ John had only beans;
 ~ only John had the beans.

- My approach suggests a compositional account of CT.
- The maxims of Quantity and Relation can be violated
 regarding a *subset of the QUDs possibilities.*

This would be a major advance in our understanding of intonation
and information structure.
6.5. The bigger picture

In English (and related languages)

Primarily, intonation situates an utterance in the discourse.
6.5. The bigger picture

In English (and related languages)
Primarily, intonation situates an utterance in the discourse.

- Nuclear stress (focus) reveals what the QUD is.
In English (and related languages)

Primarily, intonation situates an utterance in the discourse.

- Nuclear stress (focus) reveals what the QUD is.
- Rise/fall indicates whether the utterance is cooperative.
6.5. The bigger picture

In English (and related languages)

Primarily, intonation situates an utterance in the discourse.

- Nuclear stress (focus) reveals what the QUD is.
- Rise/fall indicates whether the utterance is cooperative.

Of course, intonation is not alone.
In English (and related languages)
Primarily, intonation situates an utterance in the discourse.

- Nuclear stress (focus) reveals what the QUD is.
- Rise/fall indicates whether the utterance is cooperative.

Of course, intonation is not alone.

- Discourse particles (‘well’, ‘actually’, ‘by the way’)

6.5. The bigger picture
In English (and related languages)

Primarily, intonation situates an utterance in the discourse.

- Nuclear stress (focus) reveals what the QUD is.
- Rise/fall indicates whether the utterance is cooperative.

Of course, intonation is not alone.

- Discourse particles (‘well’, ‘actually’, ‘by the way’)
- Facial expressions, gestures, ...
End of Part II
7. Main conclusions

Part I: Exhaustivity is a conversational implicature

If pragmatic reasoning is sensitive to attentive content, then exhaustivity is a conversational implicature.

Part II: Intonation and exhaustivity

Focus makes the Gricean story even more generative. Beware of implicit domain restrictions. The final rise conveys a maxim violation.
7. Main conclusions

Part I: Exhaustivity is a conversational implicature

- If pragmatic reasoning is sensitive to \textit{attentive content}
7. Main conclusions

Part I: Exhaustivity is a conversational implicature

- If pragmatic reasoning is sensitive to *attentive content*
- then *exhaustivity is a conversational implicature.*
7. Main conclusions

Part I: Exhaustivity is a conversational implicature

- If pragmatic reasoning is sensitive to *attentive content*
- then *exhaustivity is a conversational implicature*.

Part II: Intonation and exhaustivity

- Focus makes the Gricean story even more generative.
7. Main conclusions

Part I: Exhaustivity is a conversational implicature

- If pragmatic reasoning is sensitive to *attentive content*
- then *exhaustivity is a conversational implicature*.

Part II: Intonation and exhaustivity

- Focus makes the Gricean story even more generative.
- Beware of implicit domain restrictions.
7. Main conclusions

Part I: Exhaustivity is a conversational implicature

- If pragmatic reasoning is sensitive to *attentive content*
- then *exhaustivity is a conversational implicature*.

Part II: Intonation and exhaustivity

- Focus makes the Gricean story even more generative.
- Beware of implicit domain restrictions.
- The final rise conveys a maxim violation.
The End

Articles

- *Exhaustivity through the maxim of Relation*
 (*LENLS* proceedings, see staff.science.uva.nl/~westera/)
- ‘*Attention, I’m violating a maxim!*’
 (submitted, available through me)

Thanks to the *Netherlands Organisation for Scientific Research* (NWO) for financial support; to F. Roelofsen, J. Groenendijk, C. Cummins, K. Von Fintel, A. Ettinger, J. Tyler, M. Križ, the audiences of *SemDial, S-Circle* (UCSC), *SPE6, ICL, CISI, ESSLLI StuS, LIRA, Göttingen, INSEMP*, and many anonymous reviewers for valuable comments.
Grice on cancellability

A putative conversational implicature that \(p \) is explicitly cancellable if [...] it is admissible to add “but not \(p \)”, or “I do not mean to imply that \(p \)” [...].

(Grice, 1975, p. 44.)
A putative conversational implicature that \(p \) is explicitly cancellable if [...] it is admissible to add “but not \(p \)”, or “I do not mean to imply that \(p \)” [...].

(Grice, 1975, p. 44.)

[...] since it is possible to opt out of the observation of [the Cooperative Principle], it follows that a conversational implicature can be cancelled in a particular case. (p.57)
Textbook examples

Some typical examples of cancellation:

(8) On an unrelated note, it was raining.

(9) John, or Mary, or both.

CI are computed globally...

(cf. Geurts, 2010)

(10) Will one of your parents be home?

Sure, one of them will be home. Indeed, both will be home.

(11) How many people will be home?

One of my parents will be home. # Indeed, both will be home.

In (10), the CI wasn't there to begin with...

(cf. Geurts, 2010)

(12) John or Mary. Oh, but I did not mean to imply not both.

(13) It is raining. Oh, but it has stopped!

The speaker is changing her mind...
Textbook examples

Some typical examples of cancellation:

(8) On an unrelated note, it was raining.
Textbook examples

Some typical examples of cancellation:

(8) On an unrelated note, it was raining.
(9) John, or Mary, or both. $\not\exists$ not both
Textbook examples

Some typical examples of cancellation:

(8) On an unrelated note, it was raining.

(9) John, or Mary, or both. $\not\rightarrow$ not both

(10) Will one of your parents be home?
Sure, one of them will be home. Indeed, both will be home.
Textbook examples

Some typical examples of cancellation:

(8) On an unrelated note, it was raining.
(9) John, or Mary, or both. \(\not\) not both

(10) Will one of your parents be home?
 Sure, one of them will be home. Indeed, both will be home.

(12) John or Mary. Oh, but I did not mean to imply not both.
Textbook examples

Some typical examples of cancellation:

(8) On an unrelated note, it was raining.

(9) John, or Mary, or both. \(\not \leftrightarrow \text{not both} \)

CI are computed \textit{globally}...

(10) Will one of your parents be home?
 Sure, one of them will be home. Indeed, both will be home.

(12) John or Mary. Oh, but I did not mean to imply not both.
Textbook examples

Some typical examples of cancellation:

(8) On an unrelated note, it was raining.

(9) John, or Mary, or both. \(\not\land \text{not both} \)

CI are computed \textit{globally}...

(10) Will one of your parents be home?
 Sure, one of them will be home. Indeed, both will be home.

(12) John or Mary. Oh, but I did not mean to imply not both.
Textbook examples

Some typical examples of cancellation:

(8) On an unrelated note, it was raining.

(9) John, or Mary, or both. \(\nabla\) not both

CI are computed globally...

(cf. Geurts, 2010)

(10) Will one of your parents be home?

Sure, one of them will be home. Indeed, both will be home.

(12) John or Mary. Oh, but I did not mean to imply not both.
Textbook examples

Some typical examples of cancellation:

(8) On an unrelated note, it was raining.

(9) John, or Mary, or both. \(\neg not\ both\)

CI are computed \textit{globally}...

(10) Will one of your parents be home?
 Sure, one of them will be home. Indeed, both will be home.

(11) How many people will be home?
 One of my parents will be home. \# Indeed, both will be home.

(12) John or Mary. Oh, but I did not mean to imply not both.
Textbook examples

Some typical examples of cancellation:

(8) On an unrelated note, it was raining.

(9) John, or Mary, or both. \(\not \) not both

CI are computed \textit{globally}...

(cf. Geurts, 2010)

(10) Will one of your parents be home?
 Sure, one of them will be home. Indeed, both will be home.

(11) How many people will be home?
 One of my parents will be home. \# Indeed, both will be home.

In (10), the CI wasn’t there to begin with...
(cf. Geurts, 2010)

(12) John or Mary. Oh, but I did not mean to imply not both.
Textbook examples

Some typical examples of cancellation:

(8) On an unrelated note, it was raining.

(9) John, or Mary, or both. \(\checkmark \text{ not both} \)

CI are computed globally...

(cf. Geurts, 2010)

(10) Will one of your parents be home?
 Sure, one of them will be home. Indeed, both will be home.

(11) How many people will be home?
 One of my parents will be home. \(\neq \) Indeed, both will be home.

In (10), the CI wasn’t there to begin with...

(cf. Geurts, 2010)

(12) John or Mary. Oh, but I did not mean to imply not both.
Textbook examples

Some typical examples of cancellation:

(8) On an unrelated note, it was raining.

(9) John, or Mary, or both. \(\not \) not both

CI are computed \textit{globally}...

(10) Will one of your parents be home?

Sure, one of them will be home. Indeed, both will be home.

(11) How many people will be home?

One of my parents will be home. \# Indeed, both will be home.

In (10), the CI wasn’t there to begin with... \(\text{cf. Geurts, 2010} \)

(12) John or Mary. Oh, but I did not mean to imply not both.

(13) It is raining. Oh, but it has stopped!
Textbook examples

Some typical examples of cancellation:

(8) On an unrelated note, it was raining.

(9) John, or Mary, or both. \(\not \equiv not both \)

CI are computed *globally*...

(cf. Geurts, 2010)

(10) Will one of your parents be home?
 Sure, one of them will be home. Indeed, both will be home.

(11) How many people will be home?
 One of my parents will be home. \# Indeed, both will be home.

In (10), the CI wasn’t there to begin with...

(cf. Geurts, 2010)

(12) John or Mary. Oh, but I did not mean to imply not both.

(13) It is raining. Oh, but it has stopped!

The speaker is changing her mind...
Textbook examples

Some typical examples of cancellation:

(8) On an unrelated note, it was raining.

(9) John, or Mary, or both. \(\not\) not both

CI are computed *globally*...

(cf. Geurts, 2010)

(10) Will one of your parents be home?
 Sure, one of them will be home. Indeed, both will be home.

(11) How many people will be home?
 One of my parents will be home. \(\neq \) Indeed, both will be home.

In (10), the CI wasn’t there to begin with... (cf. Geurts, 2010)

(12) John or Mary. Oh, but I did not mean to imply not both.

(13) It is raining. Oh, but it has stopped!

The speaker is changing her mind...
Non-cancellable by definition

- Surely CI are cancellable in a way that is *not* prevention, disambiguation or correction?
Non-cancellable by definition

- Surely CI are cancellable in a way that is *not* prevention, disambiguation or correction?
- CIs are considered ‘defeasible’, ‘less robust’, ‘voluntary’.
Non-cancellable by definition

- Surely CI are cancellable in a way that is not prevention, disambiguation or correction?
- CIs are considered ‘defeasible’, ‘less robust’, ‘voluntary’.

Implicature cancellation (*strict version*)

For a consistent speaker to make a conversational implicature and subsequently cancel it.
Non-cancellable by definition

- Surely CI are cancellable in a way that is *not* prevention, disambiguation or correction?
- CIs are considered ‘defeasible’, ‘less robust’, ‘voluntary’.

Implicature cancellation (*strict version*)

For a consistent speaker to make a conversational implicature and subsequently cancel it.
Non-cancellable by definition

- Surely CI are cancellable in a way that is *not* prevention, disambiguation or correction?
- CIs are considered ‘defeasible’, ‘less robust’, ‘voluntary’.

Implicature cancellation (*strict version*)

For a consistent speaker to make a conversational implicature and subsequently cancel it.
Non-cancellable by definition

- Surely CI are cancellable in a way that is *not* prevention, disambiguation or correction?
- CIs are considered ‘defeasible’, ‘less robust’, ‘voluntary’.

Implicature cancellation (*strict version*)

For a consistent speaker to make a conversational implicature and subsequently cancel it.

However...

CIs in the sense of Grice (1975) cannot be cancelled in this sense:
Non-cancellable by definition

- Surely CI are cancellable in a way that is *not* prevention, disambiguation or correction?
- CIs are considered ‘defeasible’, ‘less robust’, ‘voluntary’.

Implicature cancellation (*strict version*)
For a consistent speaker to make a conversational implicature and subsequently cancel it.

However...
CIs in the sense of Grice (1975) cannot be cancelled in this sense:

1. CI is necessary for maintaining the cooperativity assumption.
Non-cancellable by definition

- Surely CIs are cancellable in a way that is not prevention, disambiguation or correction?
- CIs are considered ‘defeasible’, ‘less robust’, ‘voluntary’.

Implicature cancellation (*strict version*)

For a consistent speaker to make a conversational implicature and subsequently cancel it.

However...

CIs in the sense of Grice (1975) cannot be cancelled in this sense:

1. CI is necessary for maintaining the cooperativity assumption.
2. The mutual assumption of cooperativity is necessary for CI.
Non-cancellable by definition

- Surely CI are cancellable in a way that is not prevention, disambiguation or correction?
- CIs are considered ‘defeasible’, ‘less robust’, ‘voluntary’.

Implicature cancellation (strict version)

For a consistent speaker to make a conversational implicature and subsequently cancel it.

However...

CIs in the sense of Grice (1975) cannot be cancelled in this sense:

1. CI is necessary for maintaining the cooperativity assumption.
2. The mutual assumption of cooperativity is necessary for CI.
3. Hence, cancelling CI requires the sp. to retroactively:
 (i) revoke the cooperativity assumption; or
 (ii) revise what counted as cooperative.
Non-cancellable by definition

- Surely CI are cancellable in a way that is \textit{not} prevention, disambiguation or correction?
- CIs are considered ‘defeasible’, ‘less robust’, ‘voluntary’.

Implicature cancellation (\textit{strict version})

For a consistent speaker to make a conversational implicature and subsequently cancel it.

However...

CIs in the sense of Grice (1975) cannot be cancelled in this sense:

1. CI is necessary for maintaining the cooperativity assumption.
2. The mutual assumption of cooperativity is necessary for CI.
3. Hence, cancelling CI requires the sp. to retroactively:
 (i) revoke the cooperativity assumption; or
 (ii) revise what counted as cooperative.
4. The speaker would be either uncooperative, or inconsistent.
Exhaustivity

In sum:

- Grice’s choice of the word “cancel” is unfortunate.
Exhaustivity

In sum:

- Grice’s choice of the word “cancel” is unfortunate.
- CI is defeasible only insofar as the mutual assumption of cooperativity is.
Exhaustivity

In sum:

- Grice’s choice of the word “cancel” is unfortunate.
- CI is defeasible only insofar as the mutual assumption of cooperativity is. (That is, not really.)
Exhaustivity

In sum:

- Grice’s choice of the word “cancel” is unfortunate.
- CI is defeasible only insofar as the mutual assumption of cooperativity is. (That is, not really.)
- A really defeasible ‘CI’ is not a CI; it’s an inference.
Exhaustivity

In sum:

- Grice’s choice of the word “cancel” is unfortunate.
- CI is defeasible only insofar as the mutual assumption of cooperativity is. (That is, not really.)
- A really defeasible ‘CI’ is not a CI; it’s an inference.

Now, if I’m correct:

- Exhaustivity is a conversational implicature.
Exhaustivity

In sum:
- Grice’s choice of the word “cancel” is unfortunate.
- CI is defeasible only insofar as the mutual assumption of cooperativity is. (That is, not really.)
- A really defeasible ‘CI’ is not a CI; it’s an inference.

Now, if I’m correct:
- Exhaustivity is a conversational implicature.
- Hence, exhaustivity is not really defeasible.
Exhaustivity

In sum:

- Grice’s choice of the word “cancel” is unfortunate.
- CI is defeasible only insofar as the mutual assumption of cooperativity is. (That is, not really.)
- A really defeasible ‘CI’ is not a CI; it’s an *inference*.

Now, if I’m correct:

- Exhaustivity is a conversational implicature.
- Hence, exhaustivity is not really defeasible.
- (Previously, the competence assumption made it defeasible).
Exhaustivity

In sum:

- Grice’s choice of the word “cancel” is unfortunate.
- CI is defeasible only insofar as the mutual assumption of cooperativity is. (That is, not really.)
- A really defeasible ‘CI’ is not a CI; it’s an inference.

Now, if I’m correct:

- Exhaustivity is a conversational implicature.
- Hence, exhaustivity is not really defeasible.
- (Previously, the competence assumption made it defeasible).

This makes the Gricean story much more generative...
‘Embedded’ exhaustivity

E.g., Chierchia, et al., (2008++):
‘Embedded’ exhaustivity

E.g., Chierchia, *et al.*, (2008++):

(6) John, Mary or Bob came.
 ↭ Only one of them came.
‘Embedded’ exhaustivity

E.g., Chierchia, *et al.*, (2008++):

(6) John, Mary or Bob came.
 ~ Only one of them came.

(7) Each of the students read Othello or King Lear.
 ~ Each of the students didn’t read both.
‘Embedded’ exhaustivity

E.g., Chierchia, _et al._, (2008++):

(6) John, Mary or Bob came.
 ~ Only one of them came.

(7) Each of the students read Othello or King Lear.
 ~ Each of the students didn’t read both.

The problem

The problem has never been the Gricean approach as such, but rather _how to find the right ‘alternatives’._
‘Embedded’ exhaustivity

E.g., Chierchia, et al., (2008++):

(6) John, Mary or Bob came.
 \rightarrow Only one of them came.

(7) Each of the students read Othello or King Lear.
 \rightarrow Each of the students didn’t read both.

The problem

The problem has never been the Gricean approach as such, but rather how to find the right ‘alternatives’.

In my account:

- Attentively, conjunction and disjunction denote union.
'Embedded' exhaustivity

E.g., Chierchia, *et al.*, (2008++):

(6) John, Mary or Bob came.
 \(\sim\) Only one of them came.

(7) Each of the students read Othello or King Lear.
 \(\sim\) Each of the students didn’t read both.

The problem

The problem has never been the Gricean approach as such, but rather *how to find the right ‘alternatives’*.

In my account:

- *Attentively*, conjunction and disjunction denote *union*.
- Hence, embedding simply *accumulates* attentive content.
‘Embedded’ exhaustivity

E.g., Chierchia, *et al.*, (2008++):

(6) John, Mary or Bob came.
 \(\sim \) Only one of them came.

(7) Each of the students read Othello or King Lear.
 \(\sim \) Each of the students didn’t read both.

The problem

The problem has never been the Gricean approach as such, but rather how to find the right ‘alternatives’.

In my account:

- *Attentively*, conjunction and disjunction denote *union*.
- Hence, embedding simply *accumulates* attentive content.
- E.g., for each of the students, there is attentive content...
‘Embedded’ exhaustivity

E.g., Chierchia, *et al.*, (2008++):

(6) John, Mary or Bob came.
 ~ Only one of them came.

(7) Each of the students read Othello or King Lear.
 ~ Each of the students didn’t read both.

The problem

The problem has never been the Gricean approach as such, but rather *how to find the right ‘alternatives’*.

In my account:

- *Attentively*, conjunction and disjunction denote *union*.
- Hence, embedding simply *accumulates* attentive content.
- E.g., for each of the students, there is attentive content...

Many ‘embedded’ implicatures are in fact predicted.
‘Mention-some’ contexts

Contexts where, supposedly, exhaustivity is absent:

(16) Where can I buy an Italian newspaper?
 In the kiosk around the corner. \(\narrow \) Nowhere else.
‘Mention-some’ contexts

Contexts where, supposedly, exhaustivity is absent:

(16) Where can I buy an Italian newspaper?
 In the kiosk around the corner. \(\not\) Nowhere else.

But is it really absent?
‘Mention-some’ contexts

Contexts where, supposedly, exhaustivity is absent:

(16) Where can I buy an Italian newspaper?
 In the kiosk around the corner. \(\triangleleft\) Nowhere else.
 \(\sim\) Nowhere else that is nearby, easy to explain, \ldots

But is it really absent?
‘Mention-some’ contexts

Contexts where, supposedly, exhaustivity is absent:

(16) Where can I buy an Italian newspaper?
 In the kiosk around the corner. ↘️ Nowhere else.
 ~ Nowhere else that is nearby, easy to explain, . . .

But is it really absent?

- We get exhaustivity as usual, but on a restricted domain.
‘Mention-some’ contexts

Contexts where, supposedly, exhaustivity is absent:

(16) Where can I buy an Italian newspaper?
 In the kiosk around the corner. ↗ Nowhere else.
 ¬ Nowhere else that is nearby, easy to explain, . . .

But is it really absent?

- We get exhaustivity as usual, but on a restricted domain.
- No ‘mention-some’ when the domain is explicit:
‘Mention-some’ contexts

Contexts where, supposedly, exhaustivity is absent:

(16) Where can I buy an Italian newspaper?
 In the kiosk around the corner. \(\not\rightarrow\) Nowhere else.
 \(-\not\rightarrow\) Nowhere else that is nearby, easy to explain, . . .

But is it really absent?
 ▶ We get exhaustivity as usual, but on a restricted domain.
 ▶ No ‘mention-some’ when the domain is explicit:

(17) Of the three nearby kiosks, where can I buy an IN?
 In the kiosk around the corner. \(\not\rightarrow\) Not in the other kiosks.
‘Mention-some’ contexts

Contexts where, supposedly, exhaustivity is absent:

(16) Where can I buy an Italian newspaper?
 In the kiosk around the corner. \(\not\sim\) Nowhere else.
\(\sim\) Nowhere else that is nearby, easy to explain, ...

But is it really absent?

- We get exhaustivity as usual, but on a restricted domain.
- No ‘mention-some’ when the domain is explicit:

(17) Of the three nearby kiosks, where can I buy an IN?
 In the kiosk around the corner. \(\sim\) Not in the other kiosks.

(Alternatively, use a final rise...)

Semantics

Restriction

A restricted to b, $A_b := \{ a \cap b \mid a \in A, a \cap b \neq \emptyset \}$

Semantics (Roelofsen, 2011)

1. $[p] = \{ \{ w \in \textbf{Worlds} \mid w(p) = \text{true} \} \}$
2. $[\neg \varphi] = \{ \bigcup \varphi \}$ if $\bigcup \varphi$ is nonempty; \emptyset otherwise.
3. $[\varphi \lor \psi] = ([\varphi] \cup [\psi])|_{\varphi \cup \psi} = [\varphi] \cup [\psi]$
4. $[\varphi \land \psi] = ([\varphi] \cup [\psi])|_{\varphi \cap \psi}$
Semantics

Restriction

\(A \) restricted to \(b \), \(A_b := \{ a \cap b \mid a \in A, a \cap b \neq \emptyset \} \)

Semantics (Roelofsen, 2011)

1. \([p] = \{ \{ w \in \textbf{Worlds} \mid w(p) = \text{true} \} \}\)
2. \([-\varphi] = \{ \bigcup[\varphi] \} \) if \(\bigcup[\varphi] \) is nonempty; \(\emptyset \) otherwise.
3. \([\varphi \lor \psi] = (\{ [\varphi] \cup [\psi] \})_{|[\varphi] \cup [\psi]} = [\varphi] \cup [\psi] \)
4. \([\varphi \land \psi] = (\{ [\varphi] \cup [\psi] \})_{|[\varphi] \cap [\psi]} \)

Attentive semantics is not the only suitable semantics:

- *Unrestricted Inquisitive Sem.* (Ciardelli, 2009; Westera, 2012)
Semantics

Restriction
A restricted to \(b\), \(A_b := \{a \cap b \mid a \in A, a \cap b \neq \emptyset\}\)

Semantics (Roelofsen, 2011)

1. \([p]\) = \{\{w \in \textbf{Worlds} \mid w(p) = \text{true}\}\}
2. \([-\varphi]\) = \{\bigcup[\varphi]\} if \(\bigcup[\varphi]\) is nonempty; \(\emptyset\) otherwise.
3. \([\varphi \lor \psi]\) = (\([\varphi] \cup [\psi]\))|_{\varphi \cup \psi\} = [\varphi] \cup [\psi] \) = \([\varphi] \cup [\psi]\)
4. \([\varphi \land \psi]\) = (\([\varphi] \cup [\psi]\))|_{\varphi \cap \psi\} = \([\varphi] \cup [\psi]\)

Attentive semantics is not the only suitable semantics:

- Unrestricted Inquisitive Sem. (Ciardelli, 2009; Westera, 2012)

Minimally, the semantics must lack the absorption laws:

- Absorption: \(p \lor (p \land q) \equiv p \equiv p \land (p \lor q)\)
Semantic desiderata

- No absorption laws.
Semantic desiderata

- No absorption laws.
- Questions, the responses to which may be exhaustified, are *not* partitions.

 (cf. Groenendijk and Stokhof, 1984)
Semantic desiderata

- No absorption laws.
- Questions, the responses to which may be exhaustified, are *not* partitions.

 (cf. Groenendijk and Stokhof, 1984)

- Wh-words are existential quantifiers over sets.
‘Gricean’?

“That there [appear to be] divergences in meaning between [...] the formal devices [and] their analogs or counterparts in natural language” (Grice, 1975)
‘Gricean’?

“that there [appear to be] divergences in meaning between [...] the \textsc{formal} devices [and] their analogs or counterparts in natural language” (Grice, 1975)

- The semantics treats informative content classically.
‘Gricean’?

“that there [appear to be] divergences in meaning between [...] the FORMAL devices [and] their analogs or counterparts in natural language” (Grice, 1975)

- The semantics treats informative content classically.
- Grice wouldn’t be against other dimensions of meaning.
‘Gricean’?

“that there [appear to be] divergences in meaning between [...] the formal devices [and] their analogs or counterparts in natural language” (Grice, 1975)

- The semantics treats informative content classically.
- Grice wouldn’t be against other dimensions of meaning.
- The connectives are still algebraically ‘basic’.
‘Gricean’?

“that there [appear to be] divergences in meaning between [...] the formal devices [and] their analogs or counterparts in natural language” (Grice, 1975)

- The semantics treats informative content classically.
- Grice wouldn’t be against other dimensions of meaning.
- The connectives are still algebraically ‘basic’.

Besides: this is the only way.
Focus vs. ‘only’

The foregoing is not to say that focus ‘means’ ‘only’:
Focus vs. ‘only’

The foregoing is not to say that focus ‘means’ ‘only’:

(14) If \([\text{John}]_F\) was there, Mary was there. \(\equiv\) (c.f., Horn, 1972)
\(\neq\) If only John was there, Mary was there.
Focus vs. ‘only’

The foregoing is not to say that focus ‘means’ ‘only’:

(14) If [John]$_F$ was there, Mary was there. \hspace{1em} (c.f., Horn, 1972)
 \neq \text{If only John was there, Mary was there.}

(15) [John]$_F$ was there, and [Mary]$_F$ too.
 \neq \text{Only John was there, and only Mary.}
Focus vs. ‘only’

The foregoing is not to say that focus ‘means’ ‘only’:

(14) If \([\text{John}]_F\) was there, Mary was there. \((\text{c.f., Horn, 1972})\)
 \(\not\equiv\) If only John was there, Mary was there.

(15) \([\text{John}]_F\) was there, and \([\text{Mary}]_F\) too.
 \(\not\equiv\) Only John was there, and only Mary.

But at least for ‘simple’ sentences:

- ‘\([\text{Subject}]_F\) predicate’ \(\sim\) ‘only \([\text{Subject}]_F\) predicate’.
Formal results

Recall: A entails Q, $A \models Q$, iff
(i) $\cup A \subseteq \cup Q$; and
(ii) for all $q \in Q$, $q \cap \cup A = \emptyset$ or $q \cap \cup A \in A$
Formal results

Recall: A entails Q, \(A \models Q \), iff
(i) \(\bigcup A \subseteq \bigcup Q \); and
(ii) for all \(q \in Q \), \(q \cap \bigcup A = \emptyset \) or \(q \cap \bigcup A \in A \)

Relation implicature
For a cooperative speaker with info \(s \), responding \(A \) to \(Q \):
Formal results

Recall: \(A \) entails \(Q \), \(A \models Q \), iff
(i) \(\bigcup A \subseteq \bigcup Q \); and
(ii) for all \(q \in Q \), \(q \cap \bigcup A = \emptyset \) or \(q \cap \bigcup A \in A \)

Relation implicature

For a cooperative speaker with info \(s \), responding \(A \) to \(Q \):
(i) \(\bigcup A \cap s \subseteq \bigcup Q \)
(ii) \(\ldots \)
Formal results

Recall: \(A \) entails \(Q \), \(A \models Q \), iff
(i) \(\bigcup A \subseteq \bigcup Q \); and
(ii) for all \(q \in Q \), \(q \cap \bigcup A = \emptyset \) or \(q \cap \bigcup A \in A \)

Relation implicature

For a cooperative speaker with info \(s \), responding \(A \) to \(Q \):
(i) \(s \subseteq \overline{A} \cup \bigcup Q \)
(ii) \(\ldots \)
Formal results

Recall: A entails Q, $A \models Q$, iff
(i) $\bigcup A \subseteq \bigcup Q$; and
(ii) for all $q \in Q$, $q \cap \bigcup A = \emptyset$ or $q \cap \bigcup A \in A$

Relation implicature

For a cooperative speaker with info s, responding A to Q:
(i) $s \subseteq \bigcup \overline{A} \cup \bigcup Q$
(ii) for all $q \in Q$,
Formal results

Recall: \(A \) entails \(Q \), \(A \models Q \), iff

(i) \(\bigcup A \subseteq \bigcup Q \); and

(ii) for all \(q \in Q \), \(q \cap \bigcup A = \emptyset \) or \(q \cap \bigcup A \in A \)

Relation implicature

For a cooperative speaker with info \(s \), responding \(A \) to \(Q \):

(i) \(s \subseteq \bigcup \overline{A} \cup \bigcup Q \)

(ii) for all \(q \in Q \), \(q \cap \bigcup A \cap s = \emptyset \) or \(\ldots \)
Formal results

Recall: A entails Q, $A \models Q$, iff
(i) $\bigcup A \subseteq \bigcup Q$; and
(ii) for all $q \in Q$, $q \cap \bigcup A = \emptyset$ or $q \cap \bigcup A \in A$

Relation implicature

For a cooperative speaker with info s, responding A to Q:
(i) $s \subseteq \overline{\bigcup A} \cup \bigcup Q$
(ii) for all $q \in Q$, $s \subseteq \overline{\bigcup A} \cup \overline{q}$ or ...
Formal results

Recall: A entails Q, $A \models Q$, iff
(i) $\bigcup A \subseteq \bigcup Q$; and
(ii) for all $q \in Q$, $q \cap \bigcup A = \emptyset$ or $q \cap \bigcup A \in A$

Relation implicature

For a cooperative speaker with info s, responding A to Q:
(i) $s \subseteq \overline{\bigcup A \cup \bigcup Q}$
(ii) for all $q \in Q$, $s \subseteq \overline{\bigcup A \cup \overline{q}}$ or there is an $a \in A$ s.t. given s, $q \cap \bigcup A$ and a coincide.
Formal results

Recall: \(A \) entails \(Q \), \(A \models Q \), iff
(i) \(\bigcup A \subseteq \bigcup Q \); and
(ii) for all \(q \in Q \), \(q \cap \bigcup A = \emptyset \) or \(q \cap \bigcup A \in A \)

Relation implicature

For a cooperative speaker with info \(s \), responding \(A \) to \(Q \):
(i) \(s \subseteq \overline{\bigcup A} \cup \bigcup Q \)
(ii) for all \(q \in Q \), \(s \subseteq \overline{\bigcup A} \cup \overline{q} \) or there is an \(a \in A \) s.t.
\(s \subseteq (q \cap \bigcup A \cap \overline{a}) \cup (q \cap \bigcup A \cap a) \)
Formal results

Recall: A entails Q, $A \models Q$, iff
(i) $\cup A \subseteq \cup Q$; and
(ii) for all $q \in Q$, $q \cap \cup A = \emptyset$ or $q \cap \cup A \in A$

Relation implicature

For a cooperative speaker with info s, responding A to Q:
(i) $s \subseteq \overline{\cup A} \cup \cup Q$
(ii) for all $q \in Q$, $s \subseteq \overline{\cup A} \cup \overline{q}$ or there is an $a \in A$ s.t. $s \subseteq (q \cap \cup A \cap \overline{a}) \cup (q \cap \cup A \cap a)$
Formal results

Recall: A entails Q, $A \models Q$, iff
(i) $\bigcup A \subseteq \bigcup Q$; and
(ii) for all $q \in Q$, $q \cap \bigcup A = \emptyset$ or $q \cap \bigcup A \in A$

Relation implicature
For a cooperative speaker with info s, responding A to Q:
(i) $s \subseteq \overline{\bigcup A} \cup \bigcup Q$
(ii) for all $q \in Q$, $s \subseteq \overline{\bigcup A} \cup \overline{q}$ or there is an $a \in A$ s.t.
$s \subseteq (q \cap \bigcup A \cap \overline{a}) \cup (q \cap \bigcup A \cap a)$

Relation implicature for singleton answer
And if responding $\{a\}$ to Q for some $a \in Q$:
Formal results

Recall: A entails Q, $A \models Q$, iff
(i) $\bigcup A \subseteq \bigcup Q$; and
(ii) for all $q \in Q$, $q \cap \bigcup A = \emptyset$ or $q \cap \bigcup A \in A$

Relation implicature
For a cooperative speaker with info s, responding A to Q:
(i) $s \subseteq \overline{\bigcup A} \cup \bigcup Q$
 (ii) for all $q \in Q$, $s \subseteq \overline{\bigcup A} \cup \overline{q}$ or there is an $a \in A$ s.t.
 $s \subseteq (q \cap \bigcup A \cap \overline{a}) \cup (q \cap \bigcup A \cap a)$

Relation implicature for singleton answer
And if responding $\{a\}$ to Q for some $a \in Q$:
Formal results

Recall: A entails Q, $A \models Q$, iff
(i) $\bigcup A \subseteq \bigcup Q$; and
(ii) for all $q \in Q$, $q \cap \bigcup A = \emptyset$ or $q \cap \bigcup A \in A$

Relation implicature
For a cooperative speaker with info s, responding A to Q:
(i) $s \subseteq \overline{\bigcup A} \cup \bigcup Q$
(ii) for all $q \in Q$, $s \subseteq \overline{\bigcup A} \cup \overline{q}$ or there is an $a \in A$ s.t.
$s \subseteq (q \cap \bigcup A \cap \overline{a}) \cup (q \cap \bigcup A \cap a)$

Relation implicature for singleton answer
And if responding $\{a\}$ to Q for some $a \in Q$:
for all $q \in Q$,
Formal results

Recall: \(A \) entails \(Q \), \(A \models Q \), iff
(i) \(\bigcup A \subseteq \bigcup Q \); and
(ii) for all \(q \in Q \), \(q \cap \bigcup A = \emptyset \) or \(q \cap \bigcup A \in A \)

Relation implicature

For a cooperative speaker with info \(s \), responding \(A \) to \(Q \):
(i) \(s \subseteq \bigcup A \cup \bigcup Q \)
(ii) for all \(q \in Q \), \(s \subseteq \bigcup A \cup \overline{q} \) or there is an \(a \in A \) s.t. \(s \subseteq (q \cap \bigcup A \cap \overline{a}) \cup (q \cap \bigcup A \cap a) \)

Relation implicature for singleton answer

And if responding \(\{a\} \) to \(Q \) for some \(a \in Q \):
for all \(q \in Q \), \(s \subseteq \overline{a} \cup \overline{q} \) or ...
Formal results

Recall: A entails Q, $A \sqsubseteq Q$, iff
(i) $\bigcup A \subseteq \bigcup Q$; and
(ii) for all $q \in Q$, $q \cap \bigcup A = \emptyset$ or $q \cap \bigcup A \in A$

Relation implicature
For a cooperative speaker with info s, responding A to Q:
(i) $s \subseteq \overline{\bigcup A} \cup \bigcup Q$
(ii) for all $q \in Q$, $s \subseteq \overline{\bigcup A} \cup \overline{q}$ or there is an $a \in A$ s.t.
$s \subseteq (q \cap \bigcup A \cap a) \cup (q \cap \bigcup A \cap a)$

Relation implicature for singleton answer
And if responding $\{a\}$ to Q for some $a \in Q$:
for all $q \in Q$, $s \subseteq \overline{a} \cup \overline{q}$ or $s \subseteq (q \cap a \cap \overline{a}) \cup (q \cap a \cap a)$
Formal results

Recall: A *entails* Q, $A \models Q$, iff
(i) $\bigcup A \subseteq \bigcup Q$; and
(ii) for all $q \in Q$, $q \cap \bigcup A = \emptyset$ or $q \cap \bigcup A \in A$

Relation implicature

For a cooperative speaker with info s, responding A to Q:
(i) $s \subseteq \bigcup \overline{A} \cup \bigcup Q$
(ii) for all $q \in Q$, $s \subseteq \bigcup \overline{A} \cup \overline{q}$ or there is an $a \in A$ s.t. $s \subseteq (q \cap \bigcup A \cap \overline{a}) \cup (q \cap \bigcup A \cap a)$

Relation implicature for singleton answer

And if responding $\{a\}$ to Q for some $a \in Q$:
for all $q \in Q$, $s \subseteq \overline{a} \cup \overline{q}$ or $s \subseteq \overline{a} \cup q$
Formal results

Recall: \(A \) entails \(Q \), \(A \models Q \), iff
(i) \(\bigcup A \subseteq \bigcup Q \); and
(ii) for all \(q \in Q \), \(q \cap \bigcup A = \emptyset \) or \(q \cap \bigcup A \in A \)

Relation implicature
For a cooperative speaker with info \(s \), responding \(A \) to \(Q \):
(i) \(s \subseteq \overline{\bigcup A \cup \bigcup Q} \)
(ii) for all \(q \in Q \), \(s \subseteq \overline{\bigcup A \cup \overline{q}} \) or there is an \(a \in A \) s.t. \(s \subseteq (q \cap \bigcup A \cap \overline{a}) \cup (q \cap \bigcup A \cap \overline{a}) \)

Relation implicature for singleton answer
And if responding \(\{a\} \) to \(Q \) for some \(a \in Q \): for all \(q \in Q \), \(s \subseteq \overline{a} \cup \overline{q} \) or \(s \subseteq \overline{a} \cup q \)
Other maxims of Relation

i. $R_s \models Q$ (mine)

ii. $R_{CG} \models Q$ (Roberts's (1996) contextual entailment)

iii. $R_h \models Q$ (≈ GS's (1984) pragmatic answer)

ii. and iii. are too strong: the participants need not already know how R is relevant. They need only be able to figure it out. (left implicit here)

(5) Did John go to the party? It was raining. If it rained, John { went / didn't go }.
Other maxims of Relation

i. $R_s \vDash Q$
 (mine)

ii. $R_{CG} \vDash Q$
 (Roberts’s (1996) *contextual entailment*)

ii. and iii. are too strong:

The participants need not already know how R is relevant.

They need only be able to figure it out.

(5) Did John go to the party?

It was raining.

If it rained, John {went / didn’t go}.
Other maxims of Relation

i. $R_s \models Q$

ii. $R_{CG} \models Q$ (Roberts’s (1996) *contextual entailment*)

iii. $R_h \models Q$ (\approx GS’s (1984) *pragmatic answer*)

ii. and iii. are too strong: The participants need not already know how R is relevant. They need only be able to figure it out. (left implicit here)
Other maxims of Relation

i. $R_s \models Q$
 (mine)

ii. $R_{CG} \models Q$
 (Roberts’s (1996) contextual entailment)

iii. $R_h \models Q$
 (≈ GS’s (1984) pragmatic answer)

ii. and iii. are too strong:
Other maxims of Relation

i. \(R_s \models Q \)
 \hspace{1cm} (mine)

ii. \(R_{CG} \models Q \)
 \hspace{1cm} (Roberts’s (1996) \textit{contextual entailment})

iii. \(R_h \models Q \)
 \hspace{1cm} (\approx \text{GS’s (1984) \textit{pragmatic answer}})

ii. and iii. are too strong:

\begin{itemize}
 \item The participants need not \textit{already know} how \(R \) is relevant.
\end{itemize}

(5) Did John go to the party?
 It was raining.
 \(\Rightarrow \) If it rained, John \{went / didn’t go\}.
Other maxims of Relation

i. \(R_s \models Q \) (mine)

ii. \(R_{CG} \models Q \) (Roberts’s (1996) contextual entailment)

iii. \(R_h \models Q \) (≈ GS’s (1984) pragmatic answer)

ii. and iii. are too strong:

- The participants need not already know how \(R \) is relevant.
- They need only be able to figure it out.
Other maxims of Relation

i. $R_s \models Q$
 (mine)

ii. $R_{CG} \models Q$
 (Roberts’s (1996) contextual entailment)

iii. $R_h \models Q$
 (\approx GS’s (1984) pragmatic answer)

ii. and iii. are too strong:

- The participants need not already know how R is relevant.
- They need only be able to figure it out.
 (left implicit here)
Other maxims of Relation

i. $R_s \models Q$
 (mine)

ii. $R_{CG} \models Q$
 (Roberts’s (1996) contextual entailment)

iii. $R_h \models Q$
 (\approx GS’s (1984) pragmatic answer)

ii. and iii. are too strong:

 ▶ The participants need not already know how R is relevant.

 ▶ They need only be able to figure it out.
 (left implicit here)

(5) Did John go to the party?
 It was raining. \sim If it rained, John {went / didn’t go}.
Relatedness and knowledge

\[R_s \models Q \quad \text{‘the speaker knows how } R \text{ is related to } Q \]
Relatedness and knowledge

\[R_s \models Q \quad \text{‘the speaker knows how } R \text{ is related to } Q' \]

Relatedness

\(A \) is \textit{related} to \(Q \) in world \(w \) iff for some fact \(f \), \(w \in f \), \(A_f \models Q \).

Now:

\[\text{Within a world, everything is related.} \]
Relatedness and knowledge

\[R_s \models Q \quad \text{‘the speaker knows how } R \text{ is related to } Q \text{’} \]

Relatedness

A is *related* to \(Q \) in world \(w \) iff for some fact \(f \), \(w \in f \), \(A_f \models Q \).

- The speaker *knows that* A is related to \(Q \) iff in all \(w \in s \), A is rel. to \(Q \).
Relatedness and knowledge

\(R_s \models Q \) \quad ‘the speaker *knows how* \(R \) is related to \(Q \)’

Relatedness

\(A \) is *related* to \(Q \) in world \(w \) iff for some fact \(f \), \(w \in f \), \(A_f \models Q \).

- The speaker *knows that* \(A \) is related to \(Q \) iff in all \(w \in s \), \(A \) is rel. to \(Q \).
- The speaker *knows how* \(A \) is related to \(Q \) iff in all \(w \in s \), \(A \) is related to \(Q \) *by the same* \(f \).
Relatedness and knowledge

\[R_s \models Q \quad \text{‘the speaker knows how } R \text{ is related to } Q' \]

Relatedness

A is related to Q in world w iff for some fact f, \(w \in f \), \(A_f \models Q \).

- The speaker knows that A is related to Q iff in all \(w \in s \), A is rel. to Q.
- The speaker knows how A is related to Q iff in all \(w \in s \), A is related to Q by the same f.

Now:

- For all A, Q true in w: there is a fact f, \(w \in f \), s.t. \(A_f \models Q \).
Relatedness and knowledge

\(R_s \models Q \) ‘the speaker knows how \(R \) is related to \(Q \)’

Relatedness

\(A \) is related to \(Q \) in world \(w \) iff for some fact \(f \), \(w \in f \), \(A_f \models Q \).

- The speaker knows that \(A \) is related to \(Q \) iff in all \(w \in s \), \(A \) is rel. to \(Q \).
- The speaker knows how \(A \) is related to \(Q \) iff in all \(w \in s \), \(A \) is related to \(Q \) by the same \(f \).

Now:

- For all \(A, Q \) true in \(w \):
 there is a fact \(f \), \(w \in f \), s.t. \(A_f \models Q \).
 (e.g., let \(f \) be \(\{w\} \))
Relatedness and knowledge

\[R_s \models Q \] ‘the speaker knows how \(R \) is related to \(Q \)’

Relatedness

\(A \) is related to \(Q \) in world \(w \) iff for some fact \(f \), \(w \in f \), \(A_f \models Q \).

- The speaker knows that \(A \) is related to \(Q \) iff in all \(w \in s \), \(A \) is related to \(Q \).
- The speaker knows how \(A \) is related to \(Q \) iff in all \(w \in s \), \(A \) is related to \(Q \) by the same \(f \).

Now:

- For all \(A, Q \) true in \(w \):
 there is a fact \(f \), \(w \in f \), s.t. \(A_f \models Q \).
 (e.g., let \(f \) be \(\{w\} \))

Within a world, everything is related.
Logical relatedness

Just as [logical consequence] rules the validity of argumentation, [logical relatedness] rules the coherence of information exchange.

(Groenendijk and Roelofsen, 2009)
Logical relatedness

Just as [logical consequence] rules the validity of argumentation, [logical relatedness] rules the coherence of information exchange.

(Groenendijk and Roelofsen, 2009)

(22) Dogs and cats are mammals.
Dogs are mammals.
(Logical cons.)
Logical relatedness

Just as [logical consequence] rules the validity of argumentation, [logical relatedness] rules the coherence of information exchange.

(Groenendijk and Roelofsen, 2009)

(22) Dogs and cats are mammals.
Dogs are mammals. (Logical cons.)

(23) Dogs are mammals.
Dogs are animals. (Non-logical cons.)
Logical relatedness

Just as [logical consequence] rules the validity of argumentation, [logical relatedness] rules the coherence of information exchange.

(Groenendijk and Roelofsen, 2009)

(22) Dogs and cats are mammals.
Dogs are mammals.
(Logical cons.)

(23) Dogs are mammals. + world knowledge
Dogs are animals.
(Non-logical cons.)
Logical relatedness

Just as [logical consequence] rules the validity of argumentation, [logical relatedness] rules the coherence of information exchange.

(Groenendijk and Roelofsen, 2009)

(22) Dogs and cats are mammals. + logic

Dogs are mammals.

(23) Dogs are mammals. + world knowledge

Dogs are animals.
Logical relatedness

Just as [logical consequence] rules the validity of argumentation, [logical relatedness] rules the coherence of information exchange.

(Groenendijk and Roelofsen, 2009)

(22) Dogs and cats are mammals. + logic
Dogs are mammals.

(23) Dogs are mammals. + world knowledge
Dogs are animals.

Relatedness

A is related to Q in world w iff for some fact f, $w \in f$, $A_f \models Q$.
Logical relatedness

Just as [logical consequence] rules the validity of argumentation, [logical relatedness] rules the coherence of information exchange.

(Groenendijk and Roelofsen, 2009)

(22) Dogs and cats are mammals. + logic (Logical cons.)
Dogs are mammals.

(23) Dogs are mammals. + world knowledge (Non-logical cons.)
Dogs are animals.

Relatedness

A is related to Q in world w iff for some fact f, w ∈ f, A_f ⊨ Q.

- Logical iff f captures all and only the laws of logic.
Logical relatedness

Just as [logical consequence] rules the validity of argumentation, [logical relatedness] rules the coherence of information exchange.

(Groenendijk and Roelofsen, 2009)

(22) Dogs and cats are mammals. + logic (Logical cons.)
Dogs are mammals.

(23) Dogs are mammals. + world knowledge (Non-logical cons.)
Dogs are animals.

Relatedness
A is related to Q in world w iff for some fact f, w ∈ f, A_f |= Q.

- Logical iff f captures all and only the laws of logic.
- Non-logical iff f is a contingency.
Logical relatedness

Just as [logical consequence] rules the validity of argumentation, [logical relatedness] rules the coherence of information exchange.

(Groenendijk and Roelofsen, 2009)

(22) Dogs and cats are mammals. + logic
Dogs are mammals.

(23) Dogs are mammals. + world knowledge
Dogs are animals.

Relatedness

A is related to Q in world w iff for some fact f, w ∈ f, A_f ⊨ Q.

- Logical iff f captures all and only the laws of logic.
- Non-logical iff f is a contingency.

Logical consequence is logical relatedness.
Objective/subjective cooperativity

The maxims can be (and have been) defined in two ways:

- **Objective**: Say only what is true, relevant, etc.
- **Subjective**: Say only what you think is true, relevant, etc.

My account of the final rise relies on subjective maxims:

- Violating 'say only what you think is true' = uncertainty
- Violating 'say only what is true' = lying

But an account based on objective maxims would also work:

- Final rise: 'For some maxim, I'm not sure whether or how I comply with it'.
Objective/subjective cooperativity

The maxims can be (and have been) defined in two ways:
- **Objective**: Say only what *is* true, relevant, etc.
- **Subjective**: Say only what you think is true, relevant, etc.

My account of the final rise relies on subjective maxims:
- Violating 'say only what you think is true' = uncertainty
- Violating 'say only what is true' = lying

But an account based on objective maxims would also work:
- Final rise: 'For some maxim, I'm not sure whether or how I comply with it'.
Objective/subjective cooperativity

The maxims can be (and have been) defined in two ways:

- **Objective**: Say only what *is* true, relevant, etc.
- **Subjective**: Say only what *you think* is true, relevant, etc.
Objective/subjective cooperativity

The maxims can be (and have been) defined in two ways:

- **Objective**: Say only what *is* true, relevant, etc.
- **Subjective**: Say only what you *think* is true, relevant, etc.

My account of the final rise relies on *subjective* maxims:
Objective/subjective cooperativity

The maxims can be (and have been) defined in two ways:

- **Objective**: Say only what *is* true, relevant, etc.
- **Subjective**: Say only what *you think* is true, relevant, etc.

My account of the final rise relies on *subjective* maxims:

- Violating ‘say only what you think is true’ = uncertainty
The maxims can be (and have been) defined in two ways:

- **Objective**: Say only what *is* true, relevant, etc.
- **Subjective**: Say only what *you think* is true, relevant, etc.

My account of the final rise relies on *subjective* maxims:

- Violating ‘say only what you think is true’ = uncertainty
- Violating ‘say only what is true’ = lying
Objective/subjective cooperativity

The maxims can be (and have been) defined in two ways:

- **Objective**: Say only what *is* true, relevant, etc.
- **Subjective**: Say only what *you think* is true, relevant, etc.

My account of the final rise relies on *subjective* maxims:

- Violating ‘say only what you think is true’ = uncertainty
- Violating ‘say only what is true’ = lying

But an account based on *objective* maxims would also work:
Objective/subjective cooperativity

The maxims can be (and have been) defined in two ways:

- **Objective**: Say only what is true, relevant, etc.
- **Subjective**: Say only what you think is true, relevant, etc.

My account of the final rise relies on subjective maxims:

- Violating ‘say only what you think is true’ = uncertainty
- Violating ‘say only what is true’ = lying

But an account based on objective maxims would also work:

- Final rise: ‘For some maxim, I’m not sure whether or how I comply with it’.
Exhaustivity without Quantity

Example given by Fox (forthcoming):

(25) There’s money in box A or in box B!

\[(p \lor q) \sim \text{Not in both.}\]
Exhaustivity without Quantity

Example given by Fox (forthcoming):

(25) There’s money in box A or in box B! \[(p \lor q)\]

\[\sim \text{Not in both.}\]

But a quizmaster is not expected to comply with Quantity!
Exhaustivity without Quantity

Example given by Fox (forthcoming):

(25) There’s money in box A or in box B! $(p \lor q)$
 \sim Not in both.

But a quizmaster is not expected to comply with Quantity!

However, she does comply with Relation, Quality, Manner:
Exhaustivity without Quantity

Example given by Fox (forthcoming):

(25) There’s money in box A or in box B! \((p \lor q)\)
\(\sim\) Not in both.

But a quizmaster is not expected to comply with Quantity!

However, she does comply with Relation, Quality, Manner:

1. \(s \subseteq |p| \cup |q|\) (Quality)
2. - (Quantity disabled)
3. \(s \subseteq |p| \cup |q| \cup (|p| \cap |q|)\) or \(s \subseteq |p| \cup |q| \cup |p| \cap |q|\) (Relation)
Exhaustivity without Quantity

Example given by Fox (forthcoming):

(25) There’s money in box A or in box B! \((p \lor q)\)

\(\sim\) Not in both.

But a quizmaster is not expected to comply with Quantity!

However, she does comply with Relation, Quality, Manner:

1. \(s \subseteq |p| \cup |q|\) (Quality)

2. - (Quantity disabled)

3. \(s \subseteq |p| \cup |q| \cup (|p| \cap |q|)\) or \(s \subseteq |p| \cup |q| \cup |p| \cap |q|\) (Relation)

4. \(s \subseteq (|p| \cap |q|)\) or \(s \subseteq |p| \cap |q|\) (from 1 and 2)
Exhaustivity without Quantity

Example given by Fox (forthcoming):

(25) There’s money in box A or in box B! \((p \lor q) \)

\[\sim \text{Not in both.} \]

But a quizmaster is not expected to comply with Quantity!

However, she does comply with Relation, Quality, Manner:

1. \(s \subseteq |p| \cup |q| \) (Quality)
2. - (Quantity disabled)
3. \(s \subseteq (|p| \cup |q| \cup (|p| \cap |q|)) \) or \(s \subseteq |p| \cup |q| \cup |p| \cap |q| \) (Relation)

4. \(s \subseteq (|p| \cap |q|) \) or \(s \subseteq |p| \cap |q| \) (from 1 and 2)
5. Comply with the maxims transparently. (Manner)
Exhaustivity without Quantity

Example given by Fox (forthcoming):

(25) There’s money in box A or in box B!

\[(p \lor q) \sim \text{Not in both.}\]

But a quizmaster is not expected to comply with Quantity!

However, she does comply with Relation, Quality, Manner:

1. \[s \subseteq |p| \cup |q|\] (Quality)
2. - (Quantity disabled)
3. \[s \subseteq |p| \cup |q| \cup (|p| \cap |q|)\] or \[s \subseteq |p| \cup |q| \cup |p| \cap |q|\] (Relation)
4. \[s \subseteq (|p| \cap |q|)\] or \[s \subseteq |p| \cap |q|\] (from 1 and 2)
5. Comply with the maxims transparently. (Manner)
6. The quizmaster does not want to give it away.
Exhaustivity without Quantity

Example given by Fox (forthcoming):

(25) There’s money in box A or in box B! \((p \lor q)\)
\[\sim \text{Not in both.}\]

But a quizmaster is not expected to comply with Quantity!

However, she \textit{does} comply with Relation, Quality, Manner:

1. \(s \subseteq |p| \cup |q|\) \quad \text{(Quality)}
2. - \quad \text{(Quantity disabled)}
3. \(s \subseteq \overline{|p| \cup |q|} \cup (|p| \cap |q|)\) or \(s \subseteq |p| \cup |q| \cup |p| \cap |q|\) \quad \text{(Relation)}

\[\text{__________} \]
4. \(s \subseteq (|p| \cap |q|)\) or \(s \subseteq \overline{|p| \cap |q|}\) \quad \text{(from 1 and 2)}
5. Comply with the maxims transparently. \quad \text{(Manner)}
6. The quizmaster does not want to give it away.
\[\text{__________} \]
7. \(s \subseteq \overline{|p| \cap |q|}\) \quad \text{(from 4, 5 and 6)}
References (i)

- Geurts (2010). Quantity implicatures.
References (ii)