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Abstract

Within the framework of inquisitive semantics, we investigate the semantic pre-
requisites of an account of discourse coherence. In inquisitive semantics two views
on meaning exist. Basic inquisitive semantics, InqB, follows from the view that to
utter a sentence is to provide and request information (Roelofsen, 2011). Unrestricted
inquisitive semantics, InqU, follows from the view that to utter a sentence is to pro-
pose to update the common ground in any of several ways (Ciardelli, Groenendijk, &
Roelofsen, 2009). We illustrate with a simple example that InqU, but not InqB, can
be a semantic foundation for an account of discourse coherence.

However, the clauses of InqU have not been motivated conceptually with as much
rigour as those of InqB, and they are technically not as well understood. In this paper
we precise its conceptual motivation and, based on this conception of meaning, define a
semantics driven by general algebraic concerns. We show that the algebraic backbone
of InqU is a commutative, idempotent semiring, which will facilitate an integration of
inquisitive semantics with other formalisms. The algebraic structure gives rise to a
compliance order on meanings that we put forward as a core notion for an account of
discourse coherence.

1 Introduction

The adverb ‘actually’ can indicate some kind of incoherence or unexpectedness in a dis-
course. Consider observation 1. Bob’s response in example 1 can be marked with ‘ac-
tually’, indicating that his response was not expected after Ann’s initiative (at least in
some contexts, with some intonations, etcetera). This contrasts with Ann’s initiative in
example 2, to which the same response by Bob clearly can not be marked with ‘actually’,
indicating that Bob’s response was expected after Ann’s initiative.

∗Many thanks to Floris Roelofsen for providing valuable feedback on several versions of this work, to
Ivano Ciardelli and Jeroen Groenendijk for helpful comments, and to three anonymous reviewers. Any
remaining mistakes are of course my own.
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Observation 1 (The Challenge)

1. Ann: John will go to the party, or Mary.
Bob: Actually, both will go.

2. Ann: John will go to the party, or Mary, or both.
Bob: # Actually, both will go.

One can try to explain the contrast between examples 1 and 2 in various ways (e.g.,
perhaps by means of pragmatic strengthening or by means of semantic focus), define a
general notion of discourse coherence and give a precise semantics of the word ‘actually’.
But this is not our aim in this paper.

Rather, our aim is to lay the semantic foundation for such an account. Any seman-
tic or pragmatic account of the contrast in observation 1 is hopeless if Ann’s initiatives
in each are not already semantically distinct to begin with (and we will assume that a
semantic/pragmatic explanation is preferable over a syntactic one). I.e., the semantics at
the basis should at least assign different meanings to the formulae p∨ q and p∨ q ∨ (p∧ q).
We will refer to this challenge as ‘the Challenge’.

In light of the Challenge, we consider two implementations of inquisitive semantics.
First, in basic inquisitive semantics (InqB) (Roelofsen, 2011, see also Ciardelli & Roelofsen,
2011; Groenendijk & Roelofsen, 2009), the meaning of a sentence embodies the information
it provides and the issues it raises. We call this view on meaning ‘the Basic View’.
Starting with the Basic View, the definition of InqB follows entirely from general algebraic
concerns (Roelofsen, 2011). Second, unrestricted inquisitive semantics (InqU) (Ciardelli,
2010; Ciardelli et al., 2009) is based on a view of meanings as proposals to update the
common ground in any of several ways, or as drawing attention to those possibilities.
We call this view on meaning ‘the Proposal View’. The clauses of InqU have not been
motivated conceptually with as much rigour as those of InqB, and they are technically not
as well understood.

We will see that InqU, but not InqB, resolves the Challenge. Hence, the Basic View
on meaning is unfit for a theory of discourse coherence, while the Proposal View is more
adequate. This is our motivation to investigate the conceptual and technical underpinnings
of InqU. We start by giving a concise overview of InqB in section 2. In section 3 we
define InqU from scratch, starting from the Proposal View on meaning and driven by
general algebraic concerns. The resulting algebraic structure, a commutative, idempotent
semiring, gives rise to a compliance order on meanings that may be a suitable core notion
for an account of discourse coherence.

The resulting definition of InqU will largely coincide with the definition in (Ciardelli,
2010; Ciardelli et al., 2009), the only substantial difference being the clause for impli-
cation. Therefore, we take our main contribution to be not the semantics itself, but a
deeper conceptual and algebraic understanding of it and its role in an account of discourse
coherence.
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2 InqB: Basic inquisitive semantics

2.1 Preliminaries and the Basic View of meaning

For InqB, we follow the exposition in (Roelofsen, 2011).1 We consider only the language
of propositional logic:

Definition 1 (Syntax) For ϕ ranging over formulae, π over proposition letters:
ϕ ∶= π∣�∣(ϕ ∨ ϕ)∣(ϕ ∧ ϕ)∣(ϕ→ ψ), with ¬ϕ ∶= ϕ→ �.

The semantics for this language is defined relative to a suitable model:

Definition 2 (Model) A model M is a tuple ⟨W, I⟩, where W is a set of worlds and I is
an interpretation function that, relative to a possible world, maps each proposition letter
to a truth value.

Based on a model, an epistemic state is defined as any subset of the set of possible worlds
of the model:

Definition 3 (Epistemic state) An epistemic state based on the model ⟨W, I⟩ is a set
s ⊆W.

The meaning of a formula, i.e., its proposition, is a set of epistemic states (this will shortly
be refined by adding some restrictions):

Definition 4 (Proposition [to be refined]) A proposition based on the model ⟨W, I⟩
is a set of states based on ⟨W, I⟩.

Propositions are conceptualised in a particular way. In InqB, the meaning of a formula
embodies both its informative content and its inquisitive content. We call this the Basic
View :

Definition 5 (The Basic View) A speaker, in expressing a sentence denoting proposi-
tion A, provides the information that the actual world is in one of the states, i.e., in ⋃A
( informative content), and requests sufficient information to locate the actual world in
one of the states in A ( inquisitive content).

Because the term ‘sufficient information’ is monotone with information growth, any state
in a proposition that is properly contained in another state in the proposition, is irrelevant
for the informative and inquisitive content of the proposition. This means that we should
restrict propositions either to sets of only maximal states, or to downward-closed sets
of states, i.e., sets of states containing all substates. We impose the second restriction,
downward closure (the two restrictions in fact yield equivalent results; for details see
(Roelofsen, 2011)).

1See www.illc.uva.nl/inquisitive-semantics for an overview of inquisitive semantics, published
work and manuscripts.
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Definition 6 (Proposition) A proposition based on the model ⟨W, I⟩ is a downward-
closed, non-empty set of states based on ⟨W, I⟩, i.e., for all states s ∈ A, all substates t ⊆ s
are also in A. Let Π be the set of all propositions (based on a given model).

We wish to stress that the downward closure restriction follows directly from the Basic
View; just like the rest of the semantics below. (The non-emptiness requirement in this
definition is a technicality that makes the definitions run smoothly.) We write [[ϕ]] for the
proposition of a formula ϕ.

To illustrate, figure 1 shows the proposition [[p ∨ q]], for a model that consists of
four worlds (small circles), that differ with respect to two proposition letters p and q
(‘10’ indicates that p is true and q is false, ‘11’ that both are true, etc.). All rounded
rectangles/squares represent states. The proposition [[p ∨ q]] embodies the information
that p or q holds, and the request for sufficient information to decide whether p or q holds.

11 10

01 00

Figure 1: A visualisation of the proposition [[p ∨ q]].

2.2 Algebraic characterisation and semantics

A proposition A should entail a proposition B iff (i) A provides at least as much informa-
tion as B and (ii) A requests at least as much information as B. This is the case precisely
iff A is contained in B (for more details and proof, see (Roelofsen, 2011)):

Definition 7 (Entailment) For any A,B ∈ Π, A entails B, A⊧B, iff A ⊆ B.

Entailment is a partial order, i.e., it is reflexive, transitive and antisymmetric (it would
not have been antisymmetric without the downward closure restriction on propositions).
The set of all propositions combined with the entailment order forms a lattice, and in
particular a Heyting algebra (the algebra underlying intuitionistic logic).

Fact 1 (Algebraic characterisation of Π) ⟨Π, ⊧ ⟩ is a Heyting algebra.

A Heyting algebra comes equipped with three basic operations on propositions, among
which are addition (�) and multiplication (�). In the case of a Heyting Algebra, addi-
tion (�) gives the join, i.e., the least (i.e., strongest) upper bound, with respect to the
entailment order. Multiplication (�) gives the meet, i.e., the greatest lower bound. In
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the Heyting algebra of propositions, addition corresponds to set union and multiplication
corresponds to set intersection.

Unlike a Boolean algebra, there is no complementation operation in a Heyting algebra.
There is, however, a relative pseudo-complementation operation (5). The relative pseudo-
complement A5B is the entailment-greatest (i.e., weakest) proposition C such that A�
C ⊧B, and its definition is slightly more involved (see below). Summing up, the operations
of the Heyting algebra ⟨Π, ⊧ ⟩ are defined as follows:

Definition 8 (Basic operations on Π)

1. A�B = A ∪B;

2. A�B = A ∩B;

3. A5B = {s ∶ ∀s′ ⊆ s, if s′ ∈ A, then s′ ∈ B}

Associating the basic operations meet, join and relative pseudo-complement with the
logical connectives conjunction, disjunction and implication, gives rise to basic inquisitive
semantics (InqB):

Definition 9 (InqB)
For π a proposition letter, ϕ and ψ formulae:

1. [[π]] = ℘{w ∶ w(π) = 1};

2. [[�]] = {∅};

3. [[ϕ ∨ ψ]] = [[ϕ]]� [[ψ]];
4. [[ϕ ∧ ψ]] = [[ϕ]]� [[ψ]];
5. [[ϕ→ ψ]] = [[ϕ]]5 [[ψ]].

2.3 The Challenge

In InqB, the formulae of the Challenge, p ∨ q and p ∨ q ∨ (p ∧ q), denote the exact same
proposition (depicted in figure 2):

Fact 2 [[p ∨ q ∨ (p ∧ q)]] = [[p ∨ q]].

Since they are semantically equivalent in InqB, the contrast in observation 1 cannot be
explained in any (semantic/pragmatic) way.

Recall that the semantics InqB follows from a particular view on meaning: the Basic
View. Hence, the Basic View, though interesting in its own right, is unfit for a theory of
discourse coherence. More technically (but these technicalities, too, follow from the Basic
View), the blame can be placed on two (related) properties of InqB. First, propositions
are downward-closed, hence states properly contained in another state cannot make a
difference. Second, in a Heyting algebra (or any lattice) the laws of absorption hold, i.e.,
for all propositions A,B, A�(A�B) = A and A�(A�B) = A. From the absorption laws
it follows directly that the two formulae of the Challenge are semantically equivalent.
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Figure 2: The proposition [[p ∨ q]], identical with [[p ∨ q ∨ (p ∧ q)]].

3 InqU: Unrestricted inquisitive semantics

Unrestricted inquisitive semantics (InqU), as defined in (Ciardelli, 2010; Ciardelli et al.,
2009), is based on a view of meanings as proposals to update the common ground in
one of several ways, or, in the same paper and in the same breath, as proposals to take
certain possibilities into consideration, or to draw attention to those possibilities. The
first of these views, of meanings as proposals, actually occurs in early work on InqB, too,
although there it did not find its way into the semantics, but only into the pragmatics
(e.g., Groenendijk & Roelofsen, 2009). Because it is such a basic conception in inquisitive
semantics, because our intuitions regarding ‘proposing to update’ are stronger than for
‘taking into consideration’ and ‘drawing attention to’, and also because we like to flirt with
dynamic semantics, we choose to pursue this view - but we suspect that nothing hinges
on this.

As we will see, InqU can deal with the Challenge. However, the Proposal View on
meaning has not been pursued with great rigour, and the clauses of InqU are not as
well-understood as those of InqB. To increase our understanding of the semantics, in this
section we define a version of InqU from scratch, starting from the Proposal View and
driven by general algebraic considerations.

3.1 Meanings as proposals

Syntax, models and epistemic states are defined exactly as for InqB. Unlike in InqB, we
think of meanings as proposals. One does not propose a piece of information; rather, one
proposes doing something with that information, such as updating the common ground
with it. Hence, we define meanings, proposals, as sets of functions on epistemic states:

Definition 10 (Proposal [to be refined]) A proposal based on the model ⟨W, I⟩ is a
set of functions on epistemic states based on ⟨W, I⟩, i.e., functions f ∶ ℘W→ ℘W.

Furthermore, we restrict ourselves to functions that are eliminative and distributive. This
allows us to simplify the definition of the resulting semantics, and will make it look and
feel like InqB, as well as InqU in (Ciardelli et al., 2009), despite the conceptual shift, as we
will see shortly. A function on states is eliminative iff it only eliminates worlds, i.e., it does
not change the worlds or create new worlds. This means that we consider only functions
that model information growth, not loss; i.e., all functions are actual update functions.
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Definition 11 (Eliminativity) f ∶ ℘W→ ℘W is eliminative iff ∀s ⊆W, f(s) ⊆ s.

A function is distributive if we could, instead of applying the function to a state s, apply
the function to all singleton substates of s, take the union of their outputs, and obtain
the same result. In other words, this means that updates operate locally on worlds, not
necessarily globally on states.

Definition 12 (Finite distributivity)
f ∶ ℘W→ ℘W is finitely distributive iff ∀s, s′ ⊆W, f(∅) = ∅ and f(s ∪ s′) = f(s) ∪ f(s′).

Any eliminative, distributive function can be fully characterised by its effect on the
uninformed state W (Benthem, 1989):

Fact 3 (Update decomposition) For all f ∶ ℘W→ ℘W, if f is eliminative and finitely
distributive, then for all s ⊆W, f(s) = f(W) ∩ s.

This means that every such update function f corresponds to a unique static object f(W).
We will call such objects ‘updates-as-states’, or just ‘updates’ when no confusion can arise.
(We do not call them ‘states’, because even though that is what they are, it is not what
they represent, conceptually.) Using this result, we refine the definition of proposals to be
sets of updates-as-states:

Definition 13 (Proposal) A proposal A based on the model ⟨W, I⟩ is a set of updates-
as-states based on ⟨W, I⟩, i.e., A ⊆ ℘W. Let Π denote the set of all proposals (based on a
given model).

A proposal is the same kind of object as a proposition in InqB, i.e., a set of states,
but, crucially, it represents a different kind of object, namely, a set of update functions.
Furthermore, such objects are interpreted as proposals:

Definition 14 (The Proposal View) A speaker, in uttering a sentence denoting a pro-
posal A, proposes to execute any one of the update functions in A.

Frankly, not much is gained by spelling out the Proposal View: we take proposing as a
primitive semantic notion. If we assume the Proposal View, then updates contained in
another update, i.e., non-maximal updates-as-states, do make a difference. Hence, unlike
propositions in InqB, proposals need not be downward (or upward) closed; they are defined
as unrestricted sets of updates.

Besides the Proposal View, we need to settle on either a dynamic or a static perspective
of the semantics, before we can pin down the semantic operation underlying conjunction.
We aim for a dynamic semantics, i.e., one in which a conjunction is interpreted as a
sequence of proposals. Like the Proposal View, this dynamic perspective is a choice. (It
is motivated by the attractive outlook of connecting inquisitive semantics with dynamic
semantics and dynamic epistemic logic.) The semantics we define will derive from these
two assumptions.
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3.2 Algebraic characterisation

Unlike in the case of InqB, the algebraic structure we define on the set of meanings cannot
be a lattice, because the absorption laws must not hold. Instead, there will be two inde-
pendent orders on proposals such that, at best, the addition operation gives the join with
respect to one order, and multiplication gives the meet with respect to the other. Because
of this, it does not matter whether we start by defining the operations, or by defining the
orders, so long as we motivate the definitions according to the Proposal View. We start
by defining the operations, for didactic reasons.

The multiplication operation (�) should underly a dynamic conjunction of sentences,
i.e., it should be a sequence operation on proposals. Meanings, spelled out according to
the Proposal View, behave as follows under dynamic conjunction:

Observation 2 (Behaviour of conjunction) If one proposes to execute any of the
updates in A and (subsequently) proposes to execute any of the updates in B, one proposes
to execute any two updates, of which the first in A and the second in B.

If we think of updates as functions, then performing two updates f and g amounts to
performing their composition f ● g = {⟨s, s′′⟩ ∶ ∃s′.⟨s, s′⟩ ∈ f and ⟨s′, s′′⟩ ∈ g}. If the
functions are distributive and eliminative, as we have assumed, then their composition
f 5 g is also distributive and eliminative. Hence, it too can be represented by a static
object, i.e., a state. If a is the state corresponding to f , and b to g, then the state for f5g
is given by a ∩ b. Therefore, on sets of states, i.e., proposals, we define multiplication as
pointwise intersection:

Definition 15 (Multiplication)
A�B = {a ∩ b ∶ a ∈ A, b ∈ B}.

The proposal {W} is the identity element for multiplication, i.e., for all A ∈ Π, A�
{W} = A. Multiplication (as pointwise intersection) is associative and commutative. It
is not idempotent, which is a consequence of adopting the Proposal View combined with
our decision to treat conjunction as sequence: if a proposal, containing multiple updates,
is made twice, a different update can be chosen the first and the second time, and both
of them executed, giving a different result than if the proposal had been made only once.
These properties imply that the set of proposals with the multiplication operation and its
identity element form a commutative monoid :

Fact 4 ⟨Π,�,{W}⟩ is a commutative monoid, i.e.:

1. A� {W} = A
2. A� (B �C) = (A�B)�C

3. A�B = B �A

Because multiplication is not idempotent, it cannot give the meet with respect to any
partial order (the non-idempotency would be in conflict with the reflexivity of the order).
However, commutative monoids come with a partial order, called the divisibility order,
with respect to which multiplication would have given the meet, had it been idempotent.
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Definition 16 (Divisibility order) A ≤� B iff ∃C.B �C = A.

This can be read as follows: A ≤� B iff A can be �-decomposed, i.e., factorized, into B
and some other proposal C, i.e., iff B is a divisor of A.

The addition operation (�) should correspond to disjunction. We spell out the Proposal
View to see how proposals behave under disjunction:

Observation 3 (Behaviour of disjunction) If one proposes to execute any of the up-
dates in A or any of the updates in B, one proposes to execute any of the updates in
A ∪B.

Hence, we define our addition operator as ordinary set union:

Definition 17 (Addition) A�B = A ∪B.

The proposal ∅ is the identity element for addition, and addition (as union) is associative,
commutative and idempotent, so we have:

Fact 5 ⟨Π,�,∅⟩ is a commutative, idempotent monoid, i.e.:

1. A�∅ = A
2. A� (B �C) = (A�B)�C

3. A�B = B �A

4. A�A = A

Every commutative, idempotent monoid has a partial order with respect to which it is a
join-semilattice, and the addition operation a join operator. The order, which we call the
additive order, is defined analogously to the divisibility order, but with � instead of �.

Definition 18 (Additive order) A ≥� B iff ∃C.B �C = A (iff A�B = A iff B ⊆ A).

We can say that A ≥� B iff A can be �-decomposed into B and some other proposal C.
Because � is idempotent, this proposal C can be A itself, allowing for the more common
definition in terms of A � B = A, parenthesized above. In our case, this can be further
simplified: the additive order is the inverse of set inclusion.

Fact 6 ⟨Π,≥�⟩ is a join-semilattice, with � as join.

As an encouraging sign that the Proposal View is on the right track, the present defini-
tions of multiplication and addition ensure that the absorption laws do not hold, e.g., it is
not generally the case that A� (A�B) equals A. However, addition and multiplication
do interact in the following ways. First, ∅, the identity element for �, is an annihilator
for �, i.e., ∅�A = A� ∅ = ∅. Second, � (as pointwise intersection) distributes over �
(as union). These properties imply that the two monoids together form a commutative,
idempotent semiring, i.e., a semiring with the additional properties that multiplication is
commutative and addition is idempotent.
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Fact 7 (Algebraic characterisation of Π)
⟨Π,�,�,∅,{W}⟩ is an idempotent semiring, i.e.:

1. ⟨Π,�,∅⟩ is a commutative, idempotent monoid;

2. ⟨Π,�,{W}⟩ is a commutative monoid;

3. A� (B �C) = (A�B)� (A�C);

4. ∅�A = A�∅ = ∅.

3.3 Two orders: entailment and compliance

There are two orders on the set of proposals, the additive order (≥�) and the divisibility
order (≤�). If we associate entailment with the additive order, then entailment will allow
for �-introduction, but not for �-elimination. If we associate entailment with the divis-
ibility order, entailment will allow for �-elimination, but not for �-introduction. Once
again, the choice is guided by spelling out the Proposal View:

Observation 4 (Behaviour of entailment)

1. If one proposes to execute any update in A�B, it follows that she proposes to execute
any update in A.

2. If one proposes to execute any update in A, it does not follow that she proposes to
execute any update in A�B.

It follows that entailment on proposals should allow for �-elimination, but not for �-
introduction. Hence, we associate entailment with the divisibility order, i.e., the order
with respect to which � is almost-but-not-quite a meet operation:

Definition 19 (Entailment)
For any A,B ∈ Π, A entails B, A⊧B, iff A ≤� B (iff ∃C.B �C = A).

Note that, because multiplication is not idempotent, A⊧B does not mean that after
expressing A, expressing B is redundant: A(= B�C) need not be identical with A�B(=
(B �C)�B).

The additive order can be interpreted as follows. If A ≥� B, i.e., B ⊆ A, then all updates
proposed by B are already proposed by A. If this is the case, we say that B complies with
A, or that A makes B compliant. For clarity, we associate a new symbol with the additive
order thusly interpreted:

Definition 20 (Compliance) A makes B compliant, A∝ B, iff A ≥� B (iff B ⊆ A).

Compliance may be an important notion for describing discourse coherence. Consider the
following range of responses to an initiative:

Observation 5
John, Mary or Bob will come.
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1. Yes / #actually, John will come.

2. Yes / #actually, John or Mary will come.

3. Yes / #actually, John, Mary or Bob will come.

4. #Yes / actually, Charlie will come.

The unacceptibility of ‘actually’ in the first three responses indicates that, unlike the last
response, the first three maintain discourse coherence. Although we have not given the
semantics yet, we can see by translating disjunction as addition that the first three are
also exactly the ones that comply with the initiative, i.e.:

Fact 8 [[p ∨ q ∨ r]]∝ [[p]], [[p ∨ q]], [[p ∨ q ∨ r]]; [[p ∨ q ∨ r]] /∝ [[s]].

This prompts us to formulate the following tentative generalization:

Conjecture 1 (Discourse coherence and compliance)
A sequence of proposals A1, . . . ,An is coherent iff Ai ∝ Ai+1 for all i, 0 ≤ i ≤ n − 1.

But let us get back to defining the semantics.

3.4 Semantics

The relative pseudo-complement A 5 B, if it exists, is the unique entailment-maximal
(weakest) proposal C such that A� C ⊧B. As can be seen from the following example,
there is not always a unique such proposal (example due to F. Roelofsen).

Fact 9 Let A = {{00,01},{10,11}} and B = {{00},{01},{10},{11}}. Then there are
three ⊧ -maximal proposals C such that A�C ⊧B, namely C1 = {{00,10},{01,11}}, C2 =
{{00,11},{01,10}} and C3 = C2 �C1, none of which entail another.

So far, all definitions followed from a particular stance on meaning, combined with general
algebraic concerns. Hence, the lack of a unique entailment-maximal proposal C such that
A�C ⊧B is not a technical shortcoming, but a conceptual challenge - how are we to make
sense of this? Our suggestion (but there may be multiple that make sense) is to interpret
the existence of multiple entailment-maximal proposals as a source of indeterminacy or
choice, just like ordinary disjunction of proposals. To capture this idea, let A5B denote
the compliance-maximal proposal among the various, non-unique entailment-maximal pro-
posals. In the example, this proposal is C3. In general, it is given by the union (join) of
all entailment-maximal proposals C such that A�C ⊧B. We will define this compliance-
maximal relative pseudo-complement as follows:

Definition 21 (Compliance-maximal relative pseudo-complement)
A5B = ⋃MAX⊧ {C ∶ A�C ⊧B}.

Currently, we have not yet discovered a more constructive definition, i.e., one that tells
us how to construct the proposal A5 B. All we know at present is that a unique such
proposal exists for arbitrary A and B. And as long as there exist only countably many
proposals, as in the propositional case, it can be found.
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In sum, we have the following operations:

Definition 22 (Basic operations on Π)

1. A�B = A ∪B;

2. A�B = {a ∩ b ∶ a ∈ A, b ∈ B};

3. A5B = ⋃MAX⊧ {C ∶ A�C ⊧B}.

As before, we associate the basic operations with the logical connectives to obtain a
semantics for the syntax of propositional logic, and this gives us unrestricted inquisitive
semantics (InqU).

Definition 23 (Unrestricted inquisitive semantics (InqU))
For π a proposition letter, ϕ and ψ formulae:

1. [[π]] = {{w ∶ w(π) = 1}};

2. [[0]] = ∅;

3. [[�]] = {∅};

4. [[ϕ ∨ ψ]] = [[ϕ]]� [[ψ]];
5. [[ϕ ∧ ψ]] = [[ϕ]]� [[ψ]];
6. [[ϕ→ ψ]] = [[ϕ]]5 [[ψ]].

Note that there are two contradiction-like proposals. [[0]] = ∅ is the proposal to execute
any one of zero updates, which is impossible, while [[�]] = {∅} proposes to perform an
update with inconsistent information. We need both 0 and � lest we loose functional
completeness, because no composition of formulas ϕ ≠ 0 denotes ∅, and no composition of
formulas ϕ ≠ � denotes {∅}. The former proposal we need as an identity element for join
(which gives us a semiring structure), the latter is necessary to define negation.

Our definition of the semantics is equivalent to the definition in (Ciardelli et al., 2009),
apart from the definition of implication (and apart from some technical differences in how
empty sets are treated). Their definition of implication [[ϕ→ ψ]] gives the union over all
proposals C such that [[ϕ]]�C ⊧ [[ψ]], i.e., not just the entailment-maximal ones.

3.5 The Challenge

In InqU, without the absorption laws, [[p ∨ q]] and [[p ∨ q ∨ (p ∧ q)]] are not equivalent.
As the reader can easily verify, these formulas are assigned the proposals depicted in
figure 3. This shows that InqU resolves the Challenge, i.e., InqU is a suitable semantic
foundation for an account of the contrast in observation 1. Indeed, beyond laying the
semantic foundation, InqU not merely allows for an explanation of observation 1; in fact
it already predicts it, via conjecture 1 (that discourse coherence depends on compliance):

Fact 10 [[p ∨ q ∨ (p ∧ q)]]∝ [[p ∧ q]]; [[p ∨ q]] /∝ [[p ∧ q]].
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(a) [[p ∨ q]]
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Figure 3: The proposals of the Challenge, according to InqU.

3.6 Relation to InqB: From proposals to propositions

Dialogue is not just about proposing updates; it is also (perhaps ultimately) about in-
formation exchange. Assuming that the speaker is sincere in uttering a proposal A, her
proposal to execute any of the updates in A, provides the information that all updates in
A are compatible with her world knowledge. Hence, if the speaker’s knowledge is true, the
actual world is for sure in one of the states resulting from those updates. Furthermore,
if a proposal A is intended to result in an action, i.e., an actual update, then meeting
this intention requires that sufficient information is provided to establish for one of the
updates that the resulting state will still contain the actual world.

Since we represent updates as states, we can define the informative content and in-
quisitive content of a proposal (provided the speaker is sincere and her knowledge is true)
as follows:

Definition 24 (Informative and inquisitive content of proposals)
Expressing a proposal A provides the information that the actual world is in ⋃A (its
informative content), and it requests sufficient information to locate the actual world in
one of the states in A ( inquisitive content).

We can represent this informative and inquisitive content of a proposal A in a separate
semantic object associated with the proposal, written π(A), which we may call its propo-
sition. Definition 24 can then be reformulated in terms of propositions, and it would read
precisely as the Basic View (definition 5).

Just like it followed from the Basic View, it follows from definition 24 that the proposi-
tion π(A) of a proposal A is a downward-closed set of states. Hence, we can obtain π(A),
representing the informative and inquisitive content of a proposal A, as follows:

Fact 11 (From proposal to proposition)
Let A be a proposal, and π(A) the proposition representing its informative and inquisitive
content. Then π(A) = {s ∶ ∃s′ ∈ A.s ⊆ s′}.

We could now tread in Roelofsen’s (2011) footsteps and define an algebraic semantics
for the set of propositions corresponding to the set of proposals. The result will again
be a Heyting algebra, and the resulting semantics equivalent with InqB. In sum, InqB, a
semantics of information exchange, can be derived from InqU, a semantics of proposals.
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4 Conclusion and outlook

We have compared two implementations of inquisitive semantics with respect to their
adequacy as a semantic foundation for a theory of discourse coherence. Basic inquis-
itive semantics, InqB, models providing and requesting information (Roelofsen, 2011);
unrestricted inquisitive semantics, InqU, models proposals to update the common ground
(Ciardelli et al., 2009). We have illustrated with a simple example that InqU, but not
InqB, can be a semantic foundation for an account of discourse coherence. Motivated by
this, we have redefined InqU from scratch, to increase our conceptual and technical under-
standing of the formalism. We have assumed a view of meanings as proposals and aimed
for a dynamic notion of meaning. Based on this conception of meaning, the semantics
could be defined driven by general algebraic concerns. The algebraic backbone of InqU
turned out to be a commutative, idempotent semiring, and this gave rise to an entailment
order and a compliance order. The latter order we have tentatively linked with discourse
coherence. Finally, we have shown how InqB can be derived from InqU, both technically
and conceptually.

Our definition of InqU differs from that in (Ciardelli et al., 2009) only substantially with
respect to the clause for implication. Lacking a relative pseudo-complement operation, we
combined the two orders on meanings to define implication as a compliance-maximal
relative pseudo-complement. Although this decision followed from a particular conceptual
choice, we still regard it as an improvement over the clause in (Ciardelli et al., 2009), which
was defined in a much more ad-hoc fashion. Despite this difference, it seems that a large
portion of the empirical coverage of InqU, which concerns in particular the modal ‘might’
and its interaction with disjunction and conjunction, can be maintained. Nevertheless, a
more detailed comparison is necessary.

Conjecture 1 is intended as but an illustration of the link between discourse coherence
and the compliance order on proposals. There may be many instances of coherent discourse
that the notion of compliance, as we have defined it, does not capture. For instance,
it seems that responding to a question with an easier-to-resolve subquestion should be
allowed (Groenendijk & Roelofsen, 2009). Since compliance corresponds to a natural order
on the algebraic structure, we think that a more general account of discourse coherence
is best built on top of the current notion of compliance, rather than making the notion
itself more complex.

Finally, we hope that the algebraic characterisation of InqU will help to link inquisitive
semantics to other formalisms. In particular, idempotent semirings (or dioids) form the
core of a Kleene algebra, which underlies the set of actions/transitions in propositional
dynamic logic (PDL; see Eijk & Stokhof, 2006 for a recent overview). Exploring this link
could lead to a transfer of many interesting results, proofs, and concepts. In particular, the
connection with PDL could facilitate the integration of inquisitive semantics with dynamic
epistemic logic and non-eliminative update functions required for belief revision.
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