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ABSTRACT 
Motivation – Complex design specifications must be 
partitioned in manageable pieces to be able to evaluate 
them in separate experiments. No methodology existed 
to deal with this task. 

Research approach – Practical experience in Situated 
Cognitive Engineering and the Mission Execution Crew 
Assistant is combined with a theoretical perspective on 
the relation between use-cases, requirements and claims. 

Findings/design – Hierarchical clustering is an 
effective method for partitioning a design specification. 
Use-cases provide a good criterion based on which to 
cluster the requirements and claims. 

Originality/Value – A new method and tool are 
presented for organising requirements and for 
systematising the evaluation of a complex design 
specification. 

Take away message – Piecewise evaluation benefits 
from a use-case-based partitioning of the design 
specification combined with an experimental stance on 
requirements and claims. 

Keywords 
Empirical requirements evaluation, Cognitive 
Engineering, use-case-based decomposition, 
requirements clustering, piecewise evaluation. 

INTRODUCTION 
Future manned missions to the Moon and Mars set high 
demands for personalised support systems taking into 
account the social, cognitive and affective states of the 
astronauts.  A common way to address the complexity 
of developing such systems is to follow an iterative 
human-centered design process (see for an overview 
e.g. Norman, 1986; Rosson and Carroll, 2002).  In this 
way, the requirements, claims and use-cases in the 
design specification are developed iteratively in 
successive stages of empirical evaluation and 
refinement. 

Typically the design specification of complex cognitive 
support systems is of such a size that it cannot be 
evaluated as a whole in one experiment. Rather, the 

design specification must be divided into manageable 
pieces that can be evaluated in separate experiments.  
Partitioning the design specification for piecewise 
evaluation is a non-trivial task due to the many 
interdependencies between requirements, claims and 
use-cases. A systematic approach is required to ensure 
that the quality of the design specification is sufficiently 
assessed after its parts have been evaluated. The aim of 
this paper is to present our proposed solution to this 
problem. 

The solution is based on two core ideas. First, 
experiment design in Cognitive Engineering should be 
driven by the formulation of hypotheses that target 
pieces of the design specification from an experimental 
stance (cf. Woods, 1998; Carroll and Rosson, 2003). 
Second, a suitable partitioning of the design 
specification for piecewise evaluation can be obtained 
by applying appropriate use-case-based selection 
criteria to the complete set of hypotheses. 

To emphasise and illustrate the practical value of these 
ideas, we apply them to the Situated Cognitive 
Engineering approach in general and the Mission 
Execution Crew Assistant (MECA) project in particular 
(Neerincx and Lindenberg, 2008). MECA is an 
electronic personal assistant aimed to empower the 
cognitive capacities of human-machine teams during 
planetary and lunar exploration missions. We present a 
prototype tool to visualise the MECA design 
specification and to select hypotheses adequate for 
evaluation. 

The paper is organised as follows. In the next section, 
we introduce Situated Cognitive Engineering and 
explain which pieces of a design specification may 
represent testable hypotheses. In the third section, we 
describe how requirements and claims can be clustered 
based on the use-cases to which they apply, yielding a 
use-case-based (as opposed to functional) 
decomposition of the design specification. In the fourth 
section, we explain why a use-case-based 
decomposition is a useful method for the exploration 
and selection of hypotheses for empirical evaluation. 



ORGANISING THE DESIGN SPECIFICATION 
Following trends in Cognitive Engineering (e.g. 
Hollnagel and Woods, 1983; Norman, 1986; 
Rasmussen, 1986), and requirements engineering, we 
have applied our ideas to the Situated Cognitive 
Engineering method, as employed in the Mission 
Execution Crew Assistant project, formulated in 
(Neerincx and Lindenberg, 2008). Situated Cognitive 
Engineering centers on the notion that engineering and 
evaluating complex systems like MECA relies on 
situated rather than universal theories of cognition: 
theories which are embedded in the context of design, 
including operational demands, human factors 
knowledge and envisioned technology. 

Requirements, Claims and Core Functions 
Figure 1 summarises the way the design specification is 
organised. Based on operational demands, envisioned 
technology and human factors knowledge, a design 
specification is derived which is then iteratively 
evaluated and refined. The design specification consists 
of core functions and requirements that elaborate on 
these core functions. In addition, claims are included to 
justify features and design decisions, highlighting the 
upsides, downsides and trade-offs involved (Carroll and 
Rosson, 2003). A large set of use-cases contextualises 
the requirements, indicating in what kinds of situations 
a given requirement applies. 

This approach differs from previous work on (Situated) 
Cognitive Engineering in three ways. First, as the 
dashed line in the figure indicates, the set of core 
functions is treated as part of the requirements baseline, 
rather than as a high-level division of functional 

domains (as in for instance functional decomposition). 
This ensures that dependencies between the different 
core functions and between the requirements that 
elaborate on them are not a-priori excluded.  

Second, claims are included not only to justify the core 
functions (as in Neerincx and Lindenberg, 2008), but 
rather, in accordance with our stance on core functions 
as requirements, they are included to justify any 
individual requirement (and, optionally, sets of 
requirements).  

Third, although use-cases still serve to contextualise the 
requirements (as in Carroll 2000), we show in the 
remainder of this paper that use-cases are essential for 
organising the requirements baseline and selecting 
useful hypotheses for empirical requirements 
evaluation. 

Design Specification as a Collection of Hypotheses 
In order to deal with the often troublesome connection 
between individual design problems and an overarching 
theory as well as to streamline the evaluation process, it 
has been proposed to regard (parts of) the design 
specification as a scientific hypothesis (Carroll and 
Rosson 2003, Woods 1998): 

“An experimental stance means that designers need to 
recognise that design concepts represent hypotheses or 
beliefs about the relationship between technology and 
cognition/collaboration, [and] subject these beliefs to 
empirical jeopardy by a search for disconfirming and 
confirming evidence, […]. This experimental stance is 
needed, not because designers should mimic traditional 
research roles, but because it will make a difference in 
developing useful systems […].” (Woods 1998, pp.170-
171) 

Applied to Situated Cognitive Engineering (or 
requirements engineering in general), we propose that a 
design specification can be phrased as a hypothesis as 
follows: 

(1) Any system adhering to the requirements baseline is 
optimised to help achieving the system’s goal. 

Since claims, as justifications, are always formulated in 
line with the overarching goal of the system, we can 
make the hypothesis in (1) more concrete:   

(2) The claims are an adequate justification of the 
requirements baseline. 

After all, if the claims are an adequate justification of 
the requirements baseline (2), then a system adhering to 
the requirements baseline will optimally help reach the 
goal (1); if the claims are not an adequate justification 
of the requirements baseline (2), then a system adhering 
to that requirements baseline may not help reach the 
goal (1). In this formulation the entire requirements 
baseline is covered, but similarly any subset of 
requirements with its corresponding claims may 
function as a hypothesis. This is in line with Rosson and 
Carroll’s suggestion to treat claims as hypotheses 
(Rosson and Carroll 2008), but our formulation makes 
the different roles of requirements and claims more 

 

Requirements baseline 
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Figure 1. The basic organisation of the MECA 
design specification. Claims justify requirements, 
including the high-level core functions. Use-cases, 
aside from providing context, serve to organise the 
requirements baseline. 



explicit. Below we explain how regarding (parts of) the 
design specification as a hypothesis serves to streamline 
the evaluation and refinement loop. 

Truthfulness and Exclusiveness 
What does it mean for a set of claims to be an 
‘adequate’ justification of some part of the requirements 
baseline? First, an adequate justification is truthful: all 
information that the justification is based on must be 
factual. Second, an adequate justification is exclusive: it 
must explain why the current and not some other 
requirements baseline is optimal. For a claim to be 
truthful, the upsides, downsides and trade-offs contained 
in it should occur as such in reality. If, for instance, a 
claim includes the upside “increases efficiency by at 
least 10%” whereas factually this is only 5%, the claim 
must be revised. A revision need not always lead to the 
requirement(s) becoming worthless. After all, a 5% 
increase in efficiency is still good, provided that no 
important downsides exist. However, if new facts cause 
the downsides to dominate the upsides, the inclusion of 
the requirement in the design specification is no longer 
justified and the requirement needs to be modified or 
removed. 

For a claim to exclusively justify a requirement, it must 
hold that the claim cannot apply to any other 
requirement while maintaining its truthfulness. After all, 
if alternative requirements exist that lead to the exact 
same upsides and downsides and involve the same 
trade-offs, choosing any one of them over the others 
would be unjustifiable. If such a situation occurs, a 
generalisation of the various alternatives should take its 
place until further research reveals which of its 
instantiations is the best candidate. The exclusiveness of 
claims thus ensures that preliminary convergence in the 
requirements baseline can be detected and blocked. A 
consequence is that initial requirements are typically 
general, as well as the claims that justify them. 
Refinement can only iteratively proceed from general to 
specific, carefully justifying at each step the refinement 
made. 

Although treating the refinement process in Situated 
Cognitive Engineering in detail is beyond the scope of 
this paper, a short remark is in place here because the 
refinement of requirements can be (and should be) 
coupled to evaluation (they both label the same arrow in 
Figure 1, after all). To see this, consider that the 
exclusivity of claims requires an experiment to always 
compare various alternatives. Although in principle 
such alternatives could be invented especially for such 
an experiment, it is very hard for the researcher not to 
be biased in favor of the current requirements. This bias 
can be avoided by, instead of comparing the current 
requirements to a set of alternatives, testing various 
candidate refinements before the actual refinement takes 
place to determine which of all possible refinements 
would yield the best result. This method avoids the bias 
because the current requirement is not being questioned 
(although, of course, it was being questioned at an 
earlier stage in the evaluation and refinement cycle). 

The Mission Execution Crew Assistant 
A first design specification for MECA was constructed 
based on operational demands, human factors 
knowledge and an envisioned technology. It was then 
iteratively evaluated and refined using several methods. 
The current MECA design specification consists of 167 
requirements that elaborate on the 6 core functions 
(viewed as high-level requirements themselves), a set of 
claims that justify the inclusion of requirements in the 
baseline and a collection of about 80 use-cases. The 
core functions are health management, diagnosis, 
prognosis and prediction, collaboration, resource 
management, planning, and sense-making. Seven 
criteria have been derived from human factors 
knowledge and are referred to in the claims: to increase 
effectiveness, efficiency and situation awareness, to 
maintain appropriate trust levels, high learnability and 
high satisfaction and to incorporate emotional 
responses. Table 1 contains an example of a MECA 
requirement with its claim (simplified) and use-cases. 
As we mentioned, sets of multiple requirements rather 
than single ones could likewise be accompanied by a 
claim and use-cases, for instance to highlight 
dependencies between the requirements. 

Following the ideas discussed above, requirement 
RF2024 with its claim C064, included in Table 1, could 
be used together with other requirements and claims as 
a hypothesis. The requirement is possibly too general to 
be cast in any doubt: of course a personal assistant 
should communicate with the crew about really 
important events, for it is the only mean through which 
they could possibly learn about such events. Its claim 
with upsides and downsides is just as general, and rather 
than as a rock-hard justification it should be seen as a 
rough guideline regarding which aspects to pay 
attention to when formulating refinements. Its possible 
refinements, on the other hand, are numerous and not all 

Requirement 
RF2024 

MECA shall communicate with the crew 

about important events. 

Claim C064 Each MECA unit will alert the crew 

member regarding for instance scheduled 

events, low-frequency nominal events 

and off-nominal events. 

+ Helps maintain high situation 

awareness for crew members. 

Consistent notifications help 

maintain sufficient trust. 

- May interrupt with current activities, 

increasing cognitive task load, and 

hence decreasing effectiveness or 

efficiency. 

Use-Cases UC077, UC078, UC080, UC083 

Table 1. An example building block (simplified) of 
the MECA design specification. 



trivially valid or invalid. For instance, should MECA 
communicate about important events verbally or 
visually? Should MECA consider postponing certain 
messages depending on the current cognitive task load? 
When is an event to be classified as important enough 
for interrupting the current task? A literature study 
could narrow down the set of alternatives sufficiently 
for them to be compared in an empirical evaluation 
experiment. 

USE-CASE-BASED DECOMPOSITION OF THE 
REQUIREMENTS BASELINE 
The design specification contains a large number of use-
cases. Use-cases in the MECA project have been crafted 
along the lines of (Cockburn 2001). They make explicit 
the various contexts of use, varying from simple 
interactions with only one crew member to complex 
sequences of events (often referred to as scenarios rather 
than use-cases). Table 2 contains an example of a use-
case, containing descriptions of the goal and the actors, 
a set of relevant requirements, and a step-by-step 
description of the event. 

Use-cases are central to engineering complex systems. 
They allow multiple views and levels of detail, help 
achieve abstraction and categorisation, are concrete and 
flexible at the same time, promote work-orientation and 
invoke reflection (Carroll 2000). In this section we 
show that an important role for use-cases, not treated by 
Carroll, is to organise the requirements baseline. 

The Requirements Dendrogram 
We propose that a key role for use-cases in cognitive 
engineering is to organise the requirements baseline 
through use-case-based decomposition. By indicating 
for each requirement the use-cases to which it applies, a 

measure of similarity between requirements can be 
computed. The requirements can then be input to a 
clustering algorithm, or in particular a hierarchical 
clustering algorithm (Johnson 1967), to obtain a 
hierarchy of clusters of similar requirements. These 
clusterings range from a single large cluster containing 
all requirements (low within-cluster similarity) down to 
many small clusters containing only one requirement 
each (high within-cluster similarity), as in Figure 2a. 
Such a hierarchy of clusterings can be visualised as a 
dendrogram, illustrated in Figure 2b. 

Use-case-based decomposition is similar to the more 
traditional way of organising a design specification 
through functional decomposition (see for instance the 
‘structured analysis’ method, described by for instance 
DeMarco, 1979; Yourdon, 1989), but offers a number of 
advantages over the latter. 

First, the stativity and rigidity of a top-down functional 
decomposition does not fit the fluidity of the design 
situation – a problem that the usage-centered cognitive 
engineering was meant to resolve in the first place. Use-
case-based decomposition, on the other hand, is 
dynamic and flexible, with the hierarchy automatically 
changing as requirements or use-cases are added or 
removed. It should be mentioned here that the more 
requirements and use-cases a design specification 

Use-case 
UC083 

Alarm handling 

Goal To bundle low-level alarms into 
meaningful events. 

Actors Astronaut in habitat, MECA of habitat. 

        … 

Requirements RF2024, RF2050, RF2080, RF2260, 
RU3010, RU3011, RU3012, RU4040, 
RU4120, RU4130, RU4140, RU4170, 
RU4260, RF2230, RU4200. 

Scenario 1. Low-level smoke and IR alarms are 
activated. 
2. MECA combines the low-level alarms to 
determine the location and scope of the fire.  
3. MECA gets the attention of the astronaut  
4. MECA provides procedures to the 
astronaut to fight the fire  
5. Astronaut fights fire  
6. Fire is put out. 

Table 2. An example use-case of the MECA system. 
Fields like preconditions, post-conditions and 
comments have been omitted for brevity. 

A 

B 

C 

D 

E 
F 

G 

H 

A B C D E H G F 

   

 

 (b) 

(a) 

Figure 2. Eight requirements labeled A to H are 
clustered at several levels of within-cluster 
similarity. (a) Here, for illustrative purposes, the 
similarity between requirements corresponds to 
their distance. (b) The same hierarchical 
clustering can be depicted in a dendrogram. 



contains, the more stable the use-case-based 
decomposition becomes.  

Second, an advantage of use-case-based decomposition 
over functional decomposition is that it closely reflects 
the pragmatic experience of the user. The clusters will 
contain those combinations of requirements and the 
dependencies between them that are relevant for the 
user and which will provide a useful hypothesis for 
user-centered empirical evaluation. 

Third, in the more traditional approach, a mismatch 
between the designers’ envisioned decomposition and a 
functional hierarchy, or a disagreement between 
designers on the desired location of a requirement in the 
hierarchy, will block creativity and discussion. By 
employing use-case-based decomposition, on the other 
hand, such a mismatch will instead highlight which use-
cases may be missing or inadequate. It will lead to a 
fruitful re-evaluation of the use-cases. 

A Requirements Dendrogram for the Mission 
Execution Crew Assistant 
We decomposed the MECA requirements baseline 
based on approximately 80 use-cases. We employed the 
conceptual clustering algorithm COBWEB (Fisher, 
1987), as implemented in the WEKA workbench 
(http://sourceforge.net/projects/weka/; Witten and 
Frank, 2005), with the acuity parameter set to the 
default value and cutoff set to 0.09. In a nutshell, 
COBWEB constructs a hierarchy of clusterings by 

maximising the over-all category-utility, a measure 
based on conditional probabilities.  

In our clustering runs so far, the requirements’ 
applicability to use-cases has always been a binary 
attribute, to increase the efficiency of the manual use-
case annotation process. With applicability as a binary 
attribute, we found that use-cases should be coupled to 
requirements rather liberally for the resulting 
dendrogram to be insightful and balanced. We suspect 
that using a continuous attribute instead could further 
improve the resulting clustering. 

For the MECA project we have developed a prototype 
tool to explore and select hypotheses for empirical 
evaluation (Figure 3). Central to this tool is the 
requirements dendrogram: the hierarchy of clusters 
constructed bottom-up from the use-cases. The 
HyperGraph toolkit is used to visualise the 
requirements dendrogram (http://hypergraph. 
sourceforge.net/). A hyperbolic (i.e. fish-eye) view is a 
common tool for visualising large hierarchies, because 
it provides an intuitive way to focus on parts of the 
hierarchy while at the same time maintaining the 
overview. Selecting a cluster in the tree will reveal on 
the right the requirements contained in it and the use-
cases to which they apply. 

The MECA design specification is organised according 
to an OWL/RDF ontology (Breebaart et al. 2009), 
accessible to all parties involved through a web-

Figure 3. A screenshot of the hypothesis exploration tool (prototype). 



interface. The ontology defines concepts like ‘crew 
member’ and ‘equipment’, as well as important meta-
concepts like ‘requirement’, ‘use-case’ and ‘claim’. We 
regard the tool presented above as an extension, 
coupling a knowledge base with a dynamic, use-case-
based visualisation of the requirements baseline. 

SELECTING A HYPOTHESIS FOR EMPIRICAL 
REQUIREMENTS EVALUATION 
So far we have mainly described how a design 
specification is best organised. Central are the ideas to 
view sets of requirements, with the corresponding 
justifying claims, as hypotheses, and to decompose the 
requirements baseline based on use-cases. In the current 
section we show how both ideas are combined in a 
proposed methodology for selecting hypotheses with 
high utility for empirical evaluation. 

Criteria for a Useful Hypothesis 
When is a design specification finished? Although an 
empirical hypothesis can never be undisputedly proven 
(because a counterexample may always be discovered), 
hypotheses concerning parts of the design specification 
can be made more plausible through experimentation. 
Determining when some part of the design specification 
is finished amounts to estimating the plausibility of the 
corresponding hypothesis. There comes a point at which 
to accept it as true and enter the implementation stage 
(for pointers regarding this decision, see e.g. Zave and 
Jackson, 1997). 

Before that happens, it is useful to keep track of which 
pieces of the design specification have been tested 
together and whether the outcome confirmed the 
hypothesis, in order to avoid testing an already quite 
plausible hypothesis. With such bookkeeping, the 
plausibility of a hypothesis can be computed 
automatically. Looking again at the tool in Figure 3, 
nodes in the hyperbolic tree, representing clusters or 
hypotheses, are coloured red (not plausible yet) or green 
(plausible), based on their estimated plausibility. 

Testability and Empirical Value 
Not only do hypotheses differ in their established 
plausibility, they also differ in their testability (whether 
the hypothesis is easy to test) and empirical value 
(whether testing the hypothesis has any influence on the 
plausibility of the design specification as a whole). A 
requirements baseline can be decomposed into 
exponentially many different chunks, each with a 
corresponding hypothesis. Determining which of these 
countless hypotheses are suitable for an evaluation 
experiment is a difficult problem. 

Two rules of thumb can help to optimise testability and 
empirical value. First, the larger the number of 
requirements in a hypothesis, the more closely it 
resembles the design specification as a whole and hence 
the higher its empirical value, but the lower its 
testability. A hypothesis that concerns the entire 
requirements baseline carries maximal empirical value, 
but it is also the hardest to test – after all, one has to 
implement or simulate the entire system.  

Second, related requirements are often subject to 
various interdependencies, the inclusion of which in a 
hypothesis greatly increases its empirical value. 
Relatedness also increases a hypothesis’ testability, 
because related requirements apply in similar situations 
and can be tested under similar experimental conditions. 
This is especially the case when relatedness is estimated 
based on the use-cases in which requirements occur, 
rather than for instance on functional grounds. 

Both rules of thumb are present already in the 
dendrogram resulting from a use-case-based 
decomposition of the requirements baseline (previous 
section). The number of requirements is incorporated 
roughly in the vertical dimension in the hierarchy, with 
the sets higher up in the dendrogram containing more 
requirements than the sets at the bottom. The 
relatedness between requirements is responsible for 
grouping some requirements together while keeping 
others separated and is fundamental to the dendrogram. 
A use-case-based decomposition of the requirements 
baseline thus allows the designer to focus on parts of the 
design specification that, as hypotheses, will optimise 
empirical value and testability. 

A Simple Procedure for Selecting Hypotheses 
Given a requirements dendrogram, possibly 
incorporated in a tool like the prototype presented 
above, the methodology for selecting an optimal 
hypothesis can be sketched as follows: 

1. Select an underevaluated hypothesis (i.e. a red 
cluster in the dendrogram in Figure 3). 

2. If the hypothesis is very difficult to test given the 
resources available (money, time, participants, 
software), move down in the dendrogram to its sub-
hypotheses until an underevaluated hypothesis is 
encountered that is testable. 

3. If the hypothesis is very easy to test given the 
resources available, consider moving up in the 
dendrogram until a maximally challenging 
hypothesis is encountered. 

The testability of hypotheses higher up in the 
dendrogram increases gradually as each of its sub-
hypotheses are made plausible, because only the 
interaction of its sub-hypotheses remains to be 
investigated. This enables the designer to gradually test 
larger and larger parts of the requirements baseline 
without introducing too many variables at once. 

CONCLUSION 
Partitioning a large design specification for piecewise 
evaluation can be difficult due to the many 
interdependencies between requirements, claims and 
use-cases. In this paper, we have proposed a method to 
improve systematicity of piecewise evaluation in 
Situated Cognitive Engineering in two ways. First, each 
set of requirements with a set of justifying claims is 
regarded as a hypothesis concerning the adequacy of the 
justification. Such hypotheses should be tested by 
comparing different refinements of the requirements 



baseline. Second, whether a hypothesis is worth testing 
depends on the number of requirements, the relatedness 
of its requirements (which can be estimated based on 
use-cases), and its established plausibility. Applying the 
method yields a use-case-based decomposition of the 
design specification. We have developed a tool to 
support the method. 

We believe the proposed method is an asset for the 
development of a wide range of cognitive systems, such 
as naval ships design (Neerincx, et al., 2008), patient 
self-care supervision (Blanson Henkemans, et al., 
2007), negotiation support (Hindriks and Jonker, 2008) 
and Mars surface operations (Clancey, Lee and Sierhuis, 
2001). 

We have identified a number of interesting directions 
for future work. We intend to investigate different ways 
to annotate requirements for clustering (other than use-
case-based). We have gained some initial experience 
with testability-based decomposition by annotating all 
requirements with the experimental conditions under 
which they could be evaluated (in a virtual or real 
environment, with human participants or artificial 
agents, with or without a measure for cognitive task 
load, etc.). We believe that such criteria can provide a 
valuable addition to our method. Another way to 
improve the requirements clustering method could be to 
enrich the annotations of use-cases and requirements by 
referring to a dedicated ontology and use these 
annotations as a basis for clustering. Natural language 
processing methods such as Latent Semantic Analysis 
could be employed to automate part of the annotation 
process. 

Another direction for future research is to compare 
functional decomposition with use-case-based 
decomposition. We have already explained that a use-
case-based decomposition approach better fits the 
dynamicity of the design context, helps to refine use-
cases and reveals important interdependencies that 
would otherwise have gone unnoticed. Another 
important difference concerns the lack of cluster labels 
in use-case-based decomposition, which are usually 
defined from the start in functional decomposition. Two 
questions could address this difference. First, would 
meaningful cluster labels increase insight in the 
hierarchy and, for instance, promote communication? 
Second, if desired, could such labels be derived 
automatically from the data? So far, automatically 
labeling clusters based on the descriptions of use-cases 
to which they apply has yielded promising results. 

Finally, an important topic for future work is the link 
between evaluation and refinement and the role of a 
use-case-based decomposition therein. Use-case-based 
decomposition results in a hierarchy that from top to 
bottom roughly reflects the routes of refinement, leading 
from general to increasingly specific requirements. 
Clusters higher up in the hierarchy not only contain 
more general requirements, in a way they can also be 
identified with such high-level requirements. For that 
reason we expect that the proposed method could be 

useful for identifying areas that need refinement and 
areas that have been prematurely refined. 
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